My first LunarLander using DeepRL
Browse files- .gitattributes +1 -0
- PPO-LunarLander-v2.zip +3 -0
- PPO-LunarLander-v2/_stable_baselines3_version +1 -0
- PPO-LunarLander-v2/data +94 -0
- PPO-LunarLander-v2/policy.optimizer.pth +3 -0
- PPO-LunarLander-v2/policy.pth +3 -0
- PPO-LunarLander-v2/pytorch_variables.pth +3 -0
- PPO-LunarLander-v2/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
PPO-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:259615fab1cf2af701e9f66f6c572a9962be680de7be2a88fb185d1a6720dd9b
|
3 |
+
size 143995
|
PPO-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
PPO-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa95d9847a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa95d984830>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa95d9848c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa95d984950>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa95d9849e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa95d984a70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa95d984b00>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa95d984b90>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa95d984c20>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa95d984cb0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa95d984d40>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fa95d9d9240>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1007616,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651840832.0135498,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADqsL3D2QG6zUnttH4NjrY1pJe7KhaLtwAAgD8AAIA/gLuCvfZoFTl+b6U6BFyoNVtYBLtsSsa5AACAPwAAgD9maeM9V5MLP2JtT716Kx6/7SPhPYRmNr0AAAAAAAAAAFpAv72z9WA/kHqhu1cNI79iNii+ZmnQuwAAAAAAAAAA5rx3PfbkSLp1ohc6adsuNSlTZLqibjC5AACAPwAAAAAz0zS6+kOzP5TqNzyK2ym+SK9/vLtex70AAAAAAAAAANpruT3tdWw/9jeHPnkVX79H/vA98lXFPQAAAAAAAAAAOgghvnTxBj68pZ8+G0i/vtC27T3Wz549AAAAAAAAAADmwEG9iUJ+PmMTcD7WGee+7QGgPe26zT0AAAAAAAAAANrMuL173pS6ciBUPH6DLTUxq9c6MxMmNAAAgD8AAIA/ACToPTeXpz81nvI+Kgz7vhdRzD0L8RM+AAAAAAAAAABac4c9SKH0uKb9lLfv3Uex7CEbux5mtDYAAIA/AACAP2ZxjTznUjw+q9JwvPrTl74eb189JkOZvQAAAAAAAAAADRuhvh7VPj+BxDC9030avxTh2L7G3jA+AAAAAAAAAABALY4+x2k3Pyu7YT7PV0m/QUSpPiPhvzsAAAAAAAAAAM3Vn73DJTA5uhvZOxSuL7MNXLO7K8JAswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR3cQO5MHc0CUhpRSlIwBbJRLrowBdJRHQKbuwzXSSeR1fZQoaAZoCWgPQwjItgw4C5VwQJSGlFKUaBVL4WgWR0Cm7vK0MPSVdX2UKGgGaAloD0MInmD/dS5CcUCUhpRSlGgVS9ZoFkdApu8JWBBiTnV9lChoBmgJaA9DCLt+wW5YsG5AlIaUUpRoFUvYaBZHQKbvGI0IkZ91fZQoaAZoCWgPQwgwoBfuXCRzQJSGlFKUaBVL0mgWR0Cm7x6hHskZdX2UKGgGaAloD0MI8nwG1NsOckCUhpRSlGgVS8JoFkdApu+OEmICVHV9lChoBmgJaA9DCN8Xl6o0hnFAlIaUUpRoFUvnaBZHQKbvuSi/O+t1fZQoaAZoCWgPQwhAogkUsSBxQJSGlFKUaBVLwmgWR0Cm78vkJa7mdX2UKGgGaAloD0MIRkPGo5QAckCUhpRSlGgVS7toFkdApu/20ojOcHV9lChoBmgJaA9DCGiyf57GiXBAlIaUUpRoFUu+aBZHQKbv/p6hQFd1fZQoaAZoCWgPQwgsmzkkNSJyQJSGlFKUaBVL1WgWR0Cm8MtDtw71dX2UKGgGaAloD0MI5bZ9j7qzcUCUhpRSlGgVS71oFkdApvDZcZ9/jXV9lChoBmgJaA9DCD57LlNTAHFAlIaUUpRoFUvTaBZHQKbw4dCE6DJ1fZQoaAZoCWgPQwgp6sw9JApvQJSGlFKUaBVLvGgWR0Cm8OwXqJMydX2UKGgGaAloD0MIrTQpBZ2ecUCUhpRSlGgVS7VoFkdApvEfV/c32nV9lChoBmgJaA9DCBUfn5Bda3NAlIaUUpRoFUvsaBZHQKbxNXwLE1l1fZQoaAZoCWgPQwiD4PHtHaZyQJSGlFKUaBVL5WgWR0Cm8VJz90ihdX2UKGgGaAloD0MIdjdPdcibb0CUhpRSlGgVS8FoFkdApvFZhc7henV9lChoBmgJaA9DCFBR9Sud63JAlIaUUpRoFUvXaBZHQKbxawGnn+11fZQoaAZoCWgPQwh/SwD+KV9EQJSGlFKUaBVLrGgWR0Cm8ZN1yNn5dX2UKGgGaAloD0MIN45Yiw9dckCUhpRSlGgVTaMCaBZHQKbxxb7CSA91fZQoaAZoCWgPQwh7E0NyshxwQJSGlFKUaBVL2mgWR0CnCXIuPFNtdX2UKGgGaAloD0MI3rBtUaZ8c0CUhpRSlGgVS/hoFkdApwmCKxcE/3V9lChoBmgJaA9DCBmveVXn5XJAlIaUUpRoFUv6aBZHQKcJm1a4c3l1fZQoaAZoCWgPQwhrfZHQFiNwQJSGlFKUaBVL82gWR0CnCbIod+5OdX2UKGgGaAloD0MI7fSDukj6cUCUhpRSlGgVTUgBaBZHQKcJvRlYlpp1fZQoaAZoCWgPQwgceLXcGalyQJSGlFKUaBVLvWgWR0CnCeR8+iaidX2UKGgGaAloD0MIXvQVpNmtcUCUhpRSlGgVS71oFkdApwnvMOf/WHV9lChoBmgJaA9DCO8CJQUWlnJAlIaUUpRoFUvSaBZHQKcKDC53C9B1fZQoaAZoCWgPQwjfcB+59c5xQJSGlFKUaBVLsGgWR0CnCkTeO4oadX2UKGgGaAloD0MI7Z+nAcOXckCUhpRSlGgVS89oFkdApwpS2F36h3V9lChoBmgJaA9DCFK3s698yXFAlIaUUpRoFU0AAWgWR0CnCpeMhougdX2UKGgGaAloD0MI9kVCW86wcECUhpRSlGgVS7RoFkdApwqqesgdO3V9lChoBmgJaA9DCOtvCcB/InFAlIaUUpRoFUvdaBZHQKcKqWX1J191fZQoaAZoCWgPQwgUzm4tk/U4QJSGlFKUaBVLYWgWR0CnCrwyyleodX2UKGgGaAloD0MIlrGhm/3TcUCUhpRSlGgVS/JoFkdApwrG0LMLW3V9lChoBmgJaA9DCJs6j4o/6HBAlIaUUpRoFUvqaBZHQKcK0OQQtjF1fZQoaAZoCWgPQwicGJKTSd9wQJSGlFKUaBVL32gWR0CnCuaiTMaCdX2UKGgGaAloD0MIbcg/M0hHckCUhpRSlGgVS9doFkdApwu9I3BHkXV9lChoBmgJaA9DCG2q7pGNvXFAlIaUUpRoFUvkaBZHQKcL0us90Rx1fZQoaAZoCWgPQwgUdlH0ADFzQJSGlFKUaBVLvmgWR0CnC9vGACnxdX2UKGgGaAloD0MIsHH9uz7AcUCUhpRSlGgVS/ZoFkdApwxV41P3z3V9lChoBmgJaA9DCCZuFcQAN3FAlIaUUpRoFUvpaBZHQKcMZl6qsEJ1fZQoaAZoCWgPQwhMF2L1x61xQJSGlFKUaBVL1GgWR0CnDIPnr6cidX2UKGgGaAloD0MIVpqUgm5dcECUhpRSlGgVS7toFkdApwzKeAd4mnV9lChoBmgJaA9DCJzEILAyCHFAlIaUUpRoFUu/aBZHQKcMyrYoRZl1fZQoaAZoCWgPQwgCLPLrhyJwQJSGlFKUaBVL3GgWR0CnDPlfqoqDdX2UKGgGaAloD0MIYTYBhuVac0CUhpRSlGgVS9VoFkdApwz4plSS/3V9lChoBmgJaA9DCGhcOBBSU3JAlIaUUpRoFUv5aBZHQKcNB6HCXQd1fZQoaAZoCWgPQwjcgTrl0b1BwJSGlFKUaBVLZmgWR0CnDQk5IYm+dX2UKGgGaAloD0MI4X7AA8P8cECUhpRSlGgVS/FoFkdApw1K7GvOhXV9lChoBmgJaA9DCFiqC3hZ7XBAlIaUUpRoFUvYaBZHQKcNStYjjaR1fZQoaAZoCWgPQwgy6e+lcGd0QJSGlFKUaBVNUwFoFkdApw1Knm7rcHV9lChoBmgJaA9DCImYEkn09G9AlIaUUpRoFUvnaBZHQKcNVzz3AVR1fZQoaAZoCWgPQwgC2IAIcdk0wJSGlFKUaBVLc2gWR0CnDb8nVoYfdX2UKGgGaAloD0MI3uS36CR4c0CUhpRSlGgVS8NoFkdApw3hNO/L1XV9lChoBmgJaA9DCAjMQ6Z82G9AlIaUUpRoFU1sAWgWR0CnDeugHu7ZdX2UKGgGaAloD0MIUFWhgRiMcUCUhpRSlGgVS7VoFkdApw5BCpm29nV9lChoBmgJaA9DCGPS30vhHTtAlIaUUpRoFUuEaBZHQKcOmc7Qswt1fZQoaAZoCWgPQwhAhSNIJV1zQJSGlFKUaBVL3mgWR0CnDsQYtQKsdX2UKGgGaAloD0MIcclxp7SocECUhpRSlGgVS8ZoFkdApyVzY9Pk73V9lChoBmgJaA9DCOuqQC2GmHFAlIaUUpRoFUvKaBZHQKclglUp/gB1fZQoaAZoCWgPQwgaNV8lH4hyQJSGlFKUaBVNGQFoFkdApyWCJwbVBnV9lChoBmgJaA9DCOqxLQMORXBAlIaUUpRoFUvIaBZHQKclo9ugpSd1fZQoaAZoCWgPQwguNxjqsLFvQJSGlFKUaBVLvWgWR0CnJdMTviLmdX2UKGgGaAloD0MI8fJ0ruhwcECUhpRSlGgVS+JoFkdApyXtkSVW0nV9lChoBmgJaA9DCKW/l8IDt3JAlIaUUpRoFUvhaBZHQKcl9e40/GF1fZQoaAZoCWgPQwj+X3XkyPluQJSGlFKUaBVLuGgWR0CnJks4DLbIdX2UKGgGaAloD0MImifXFMhbcECUhpRSlGgVS79oFkdApyaEHpr1unV9lChoBmgJaA9DCM9Lxcb8oHNAlIaUUpRoFUv6aBZHQKcmikPczqN1fZQoaAZoCWgPQwjXFMjsbA1yQJSGlFKUaBVNAgFoFkdApyaTPppvgnV9lChoBmgJaA9DCMtIvadyYnJAlIaUUpRoFU0rAWgWR0CnJsMQ/X5GdX2UKGgGaAloD0MIy5wui8lVc0CUhpRSlGgVS+BoFkdApyboLRa5gHV9lChoBmgJaA9DCKJjB5W4sjJAlIaUUpRoFUtaaBZHQKcm7Gff4yp1fZQoaAZoCWgPQwiX5lYIq3FzQJSGlFKUaBVL52gWR0CnJ07pFCswdX2UKGgGaAloD0MIDJI+reJAckCUhpRSlGgVS8poFkdApyeAEr5IpnV9lChoBmgJaA9DCGxDxTg/kXJAlIaUUpRoFUvBaBZHQKcngEBbOeJ1fZQoaAZoCWgPQwhwJqYLMdZyQJSGlFKUaBVL3mgWR0CnJ5KJEYwZdX2UKGgGaAloD0MIN3AH6hQtckCUhpRSlGgVS9NoFkdApye8Gkep43V9lChoBmgJaA9DCPFneLMGG3RAlIaUUpRoFUvRaBZHQKcoBthNM491fZQoaAZoCWgPQwgtQUZAhaNzQJSGlFKUaBVL5GgWR0CnKAqyOaOQdX2UKGgGaAloD0MIqP3WTtTPckCUhpRSlGgVS/JoFkdApygONPxhD3V9lChoBmgJaA9DCPMd/MQBRXFAlIaUUpRoFUuoaBZHQKcoPxYJVsF1fZQoaAZoCWgPQwgAOWHCKOtxQJSGlFKUaBVLuWgWR0CnKHYyO7xvdX2UKGgGaAloD0MIEFoPX6ZtckCUhpRSlGgVTQUBaBZHQKcooNsnAqN1fZQoaAZoCWgPQwj/BYIAmQRyQJSGlFKUaBVL7WgWR0CnKL98JD3NdX2UKGgGaAloD0MIP47myIrEckCUhpRSlGgVS8doFkdApyjLi++M63V9lChoBmgJaA9DCMrd5/hoUHBAlIaUUpRoFUvJaBZHQKco+YKIBR11fZQoaAZoCWgPQwikw0MYP3FMQJSGlFKUaBVLqGgWR0CnKQ62F36idX2UKGgGaAloD0MIelG7XwUbckCUhpRSlGgVS9poFkdApykqwfQrtnV9lChoBmgJaA9DCKzijczjhnJAlIaUUpRoFU0KAWgWR0CnKUxx1gYxdX2UKGgGaAloD0MIYYvdPqvbcUCUhpRSlGgVS7poFkdApyluuFHrhXV9lChoBmgJaA9DCL9lTpcF+XBAlIaUUpRoFUvGaBZHQKcpoJ40Mw11fZQoaAZoCWgPQwiflEkNbXw7QJSGlFKUaBVLc2gWR0CnKgIZZSvUdX2UKGgGaAloD0MIsz9Qbts9c0CUhpRSlGgVS9xoFkdApyoQI6bONnV9lChoBmgJaA9DCE2jycWYJHJAlIaUUpRoFUvHaBZHQKcqJY/3WWh1fZQoaAZoCWgPQwjrHW6Hxv5wQJSGlFKUaBVLyGgWR0CnKiyBbwBpdX2UKGgGaAloD0MIy4XKv1ZScUCUhpRSlGgVS7toFkdApyqEQiA2AHV9lChoBmgJaA9DCE/KpIY2kHBAlIaUUpRoFUvraBZHQKcqlLeyiVV1fZQoaAZoCWgPQwgu/rYnCPFzQJSGlFKUaBVL5GgWR0CnKrlwLmZFdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 1230,
|
79 |
+
"n_steps": 512,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 32,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e59f42dfbc7095abd7a25c05f6a3acd2fae6bbbc7c05d853342ae4b613a2a2ee
|
3 |
+
size 84893
|
PPO-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b40ab9c0fa2db24085eae00a7e5ef44dfd7527d23120c618f6fb3f7d88e4ec23
|
3 |
+
size 43201
|
PPO-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 249.51 +/- 87.08
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa95d9847a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa95d984830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa95d9848c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa95d984950>", "_build": "<function ActorCriticPolicy._build at 0x7fa95d9849e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa95d984a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa95d984b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa95d984b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa95d984c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa95d984cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa95d984d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa95d9d9240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1007616, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651840832.0135498, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADqsL3D2QG6zUnttH4NjrY1pJe7KhaLtwAAgD8AAIA/gLuCvfZoFTl+b6U6BFyoNVtYBLtsSsa5AACAPwAAgD9maeM9V5MLP2JtT716Kx6/7SPhPYRmNr0AAAAAAAAAAFpAv72z9WA/kHqhu1cNI79iNii+ZmnQuwAAAAAAAAAA5rx3PfbkSLp1ohc6adsuNSlTZLqibjC5AACAPwAAAAAz0zS6+kOzP5TqNzyK2ym+SK9/vLtex70AAAAAAAAAANpruT3tdWw/9jeHPnkVX79H/vA98lXFPQAAAAAAAAAAOgghvnTxBj68pZ8+G0i/vtC27T3Wz549AAAAAAAAAADmwEG9iUJ+PmMTcD7WGee+7QGgPe26zT0AAAAAAAAAANrMuL173pS6ciBUPH6DLTUxq9c6MxMmNAAAgD8AAIA/ACToPTeXpz81nvI+Kgz7vhdRzD0L8RM+AAAAAAAAAABac4c9SKH0uKb9lLfv3Uex7CEbux5mtDYAAIA/AACAP2ZxjTznUjw+q9JwvPrTl74eb189JkOZvQAAAAAAAAAADRuhvh7VPj+BxDC9030avxTh2L7G3jA+AAAAAAAAAABALY4+x2k3Pyu7YT7PV0m/QUSpPiPhvzsAAAAAAAAAAM3Vn73DJTA5uhvZOxSuL7MNXLO7K8JAswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR3cQO5MHc0CUhpRSlIwBbJRLrowBdJRHQKbuwzXSSeR1fZQoaAZoCWgPQwjItgw4C5VwQJSGlFKUaBVL4WgWR0Cm7vK0MPSVdX2UKGgGaAloD0MInmD/dS5CcUCUhpRSlGgVS9ZoFkdApu8JWBBiTnV9lChoBmgJaA9DCLt+wW5YsG5AlIaUUpRoFUvYaBZHQKbvGI0IkZ91fZQoaAZoCWgPQwgwoBfuXCRzQJSGlFKUaBVL0mgWR0Cm7x6hHskZdX2UKGgGaAloD0MI8nwG1NsOckCUhpRSlGgVS8JoFkdApu+OEmICVHV9lChoBmgJaA9DCN8Xl6o0hnFAlIaUUpRoFUvnaBZHQKbvuSi/O+t1fZQoaAZoCWgPQwhAogkUsSBxQJSGlFKUaBVLwmgWR0Cm78vkJa7mdX2UKGgGaAloD0MIRkPGo5QAckCUhpRSlGgVS7toFkdApu/20ojOcHV9lChoBmgJaA9DCGiyf57GiXBAlIaUUpRoFUu+aBZHQKbv/p6hQFd1fZQoaAZoCWgPQwgsmzkkNSJyQJSGlFKUaBVL1WgWR0Cm8MtDtw71dX2UKGgGaAloD0MI5bZ9j7qzcUCUhpRSlGgVS71oFkdApvDZcZ9/jXV9lChoBmgJaA9DCD57LlNTAHFAlIaUUpRoFUvTaBZHQKbw4dCE6DJ1fZQoaAZoCWgPQwgp6sw9JApvQJSGlFKUaBVLvGgWR0Cm8OwXqJMydX2UKGgGaAloD0MIrTQpBZ2ecUCUhpRSlGgVS7VoFkdApvEfV/c32nV9lChoBmgJaA9DCBUfn5Bda3NAlIaUUpRoFUvsaBZHQKbxNXwLE1l1fZQoaAZoCWgPQwiD4PHtHaZyQJSGlFKUaBVL5WgWR0Cm8VJz90ihdX2UKGgGaAloD0MIdjdPdcibb0CUhpRSlGgVS8FoFkdApvFZhc7henV9lChoBmgJaA9DCFBR9Sud63JAlIaUUpRoFUvXaBZHQKbxawGnn+11fZQoaAZoCWgPQwh/SwD+KV9EQJSGlFKUaBVLrGgWR0Cm8ZN1yNn5dX2UKGgGaAloD0MIN45Yiw9dckCUhpRSlGgVTaMCaBZHQKbxxb7CSA91fZQoaAZoCWgPQwh7E0NyshxwQJSGlFKUaBVL2mgWR0CnCXIuPFNtdX2UKGgGaAloD0MI3rBtUaZ8c0CUhpRSlGgVS/hoFkdApwmCKxcE/3V9lChoBmgJaA9DCBmveVXn5XJAlIaUUpRoFUv6aBZHQKcJm1a4c3l1fZQoaAZoCWgPQwhrfZHQFiNwQJSGlFKUaBVL82gWR0CnCbIod+5OdX2UKGgGaAloD0MI7fSDukj6cUCUhpRSlGgVTUgBaBZHQKcJvRlYlpp1fZQoaAZoCWgPQwgceLXcGalyQJSGlFKUaBVLvWgWR0CnCeR8+iaidX2UKGgGaAloD0MIXvQVpNmtcUCUhpRSlGgVS71oFkdApwnvMOf/WHV9lChoBmgJaA9DCO8CJQUWlnJAlIaUUpRoFUvSaBZHQKcKDC53C9B1fZQoaAZoCWgPQwjfcB+59c5xQJSGlFKUaBVLsGgWR0CnCkTeO4oadX2UKGgGaAloD0MI7Z+nAcOXckCUhpRSlGgVS89oFkdApwpS2F36h3V9lChoBmgJaA9DCFK3s698yXFAlIaUUpRoFU0AAWgWR0CnCpeMhougdX2UKGgGaAloD0MI9kVCW86wcECUhpRSlGgVS7RoFkdApwqqesgdO3V9lChoBmgJaA9DCOtvCcB/InFAlIaUUpRoFUvdaBZHQKcKqWX1J191fZQoaAZoCWgPQwgUzm4tk/U4QJSGlFKUaBVLYWgWR0CnCrwyyleodX2UKGgGaAloD0MIlrGhm/3TcUCUhpRSlGgVS/JoFkdApwrG0LMLW3V9lChoBmgJaA9DCJs6j4o/6HBAlIaUUpRoFUvqaBZHQKcK0OQQtjF1fZQoaAZoCWgPQwicGJKTSd9wQJSGlFKUaBVL32gWR0CnCuaiTMaCdX2UKGgGaAloD0MIbcg/M0hHckCUhpRSlGgVS9doFkdApwu9I3BHkXV9lChoBmgJaA9DCG2q7pGNvXFAlIaUUpRoFUvkaBZHQKcL0us90Rx1fZQoaAZoCWgPQwgUdlH0ADFzQJSGlFKUaBVLvmgWR0CnC9vGACnxdX2UKGgGaAloD0MIsHH9uz7AcUCUhpRSlGgVS/ZoFkdApwxV41P3z3V9lChoBmgJaA9DCCZuFcQAN3FAlIaUUpRoFUvpaBZHQKcMZl6qsEJ1fZQoaAZoCWgPQwhMF2L1x61xQJSGlFKUaBVL1GgWR0CnDIPnr6cidX2UKGgGaAloD0MIVpqUgm5dcECUhpRSlGgVS7toFkdApwzKeAd4mnV9lChoBmgJaA9DCJzEILAyCHFAlIaUUpRoFUu/aBZHQKcMyrYoRZl1fZQoaAZoCWgPQwgCLPLrhyJwQJSGlFKUaBVL3GgWR0CnDPlfqoqDdX2UKGgGaAloD0MIYTYBhuVac0CUhpRSlGgVS9VoFkdApwz4plSS/3V9lChoBmgJaA9DCGhcOBBSU3JAlIaUUpRoFUv5aBZHQKcNB6HCXQd1fZQoaAZoCWgPQwjcgTrl0b1BwJSGlFKUaBVLZmgWR0CnDQk5IYm+dX2UKGgGaAloD0MI4X7AA8P8cECUhpRSlGgVS/FoFkdApw1K7GvOhXV9lChoBmgJaA9DCFiqC3hZ7XBAlIaUUpRoFUvYaBZHQKcNStYjjaR1fZQoaAZoCWgPQwgy6e+lcGd0QJSGlFKUaBVNUwFoFkdApw1Knm7rcHV9lChoBmgJaA9DCImYEkn09G9AlIaUUpRoFUvnaBZHQKcNVzz3AVR1fZQoaAZoCWgPQwgC2IAIcdk0wJSGlFKUaBVLc2gWR0CnDb8nVoYfdX2UKGgGaAloD0MI3uS36CR4c0CUhpRSlGgVS8NoFkdApw3hNO/L1XV9lChoBmgJaA9DCAjMQ6Z82G9AlIaUUpRoFU1sAWgWR0CnDeugHu7ZdX2UKGgGaAloD0MIUFWhgRiMcUCUhpRSlGgVS7VoFkdApw5BCpm29nV9lChoBmgJaA9DCGPS30vhHTtAlIaUUpRoFUuEaBZHQKcOmc7Qswt1fZQoaAZoCWgPQwhAhSNIJV1zQJSGlFKUaBVL3mgWR0CnDsQYtQKsdX2UKGgGaAloD0MIcclxp7SocECUhpRSlGgVS8ZoFkdApyVzY9Pk73V9lChoBmgJaA9DCOuqQC2GmHFAlIaUUpRoFUvKaBZHQKclglUp/gB1fZQoaAZoCWgPQwgaNV8lH4hyQJSGlFKUaBVNGQFoFkdApyWCJwbVBnV9lChoBmgJaA9DCOqxLQMORXBAlIaUUpRoFUvIaBZHQKclo9ugpSd1fZQoaAZoCWgPQwguNxjqsLFvQJSGlFKUaBVLvWgWR0CnJdMTviLmdX2UKGgGaAloD0MI8fJ0ruhwcECUhpRSlGgVS+JoFkdApyXtkSVW0nV9lChoBmgJaA9DCKW/l8IDt3JAlIaUUpRoFUvhaBZHQKcl9e40/GF1fZQoaAZoCWgPQwj+X3XkyPluQJSGlFKUaBVLuGgWR0CnJks4DLbIdX2UKGgGaAloD0MImifXFMhbcECUhpRSlGgVS79oFkdApyaEHpr1unV9lChoBmgJaA9DCM9Lxcb8oHNAlIaUUpRoFUv6aBZHQKcmikPczqN1fZQoaAZoCWgPQwjXFMjsbA1yQJSGlFKUaBVNAgFoFkdApyaTPppvgnV9lChoBmgJaA9DCMtIvadyYnJAlIaUUpRoFU0rAWgWR0CnJsMQ/X5GdX2UKGgGaAloD0MIy5wui8lVc0CUhpRSlGgVS+BoFkdApyboLRa5gHV9lChoBmgJaA9DCKJjB5W4sjJAlIaUUpRoFUtaaBZHQKcm7Gff4yp1fZQoaAZoCWgPQwiX5lYIq3FzQJSGlFKUaBVL52gWR0CnJ07pFCswdX2UKGgGaAloD0MIDJI+reJAckCUhpRSlGgVS8poFkdApyeAEr5IpnV9lChoBmgJaA9DCGxDxTg/kXJAlIaUUpRoFUvBaBZHQKcngEBbOeJ1fZQoaAZoCWgPQwhwJqYLMdZyQJSGlFKUaBVL3mgWR0CnJ5KJEYwZdX2UKGgGaAloD0MIN3AH6hQtckCUhpRSlGgVS9NoFkdApye8Gkep43V9lChoBmgJaA9DCPFneLMGG3RAlIaUUpRoFUvRaBZHQKcoBthNM491fZQoaAZoCWgPQwgtQUZAhaNzQJSGlFKUaBVL5GgWR0CnKAqyOaOQdX2UKGgGaAloD0MIqP3WTtTPckCUhpRSlGgVS/JoFkdApygONPxhD3V9lChoBmgJaA9DCPMd/MQBRXFAlIaUUpRoFUuoaBZHQKcoPxYJVsF1fZQoaAZoCWgPQwgAOWHCKOtxQJSGlFKUaBVLuWgWR0CnKHYyO7xvdX2UKGgGaAloD0MIEFoPX6ZtckCUhpRSlGgVTQUBaBZHQKcooNsnAqN1fZQoaAZoCWgPQwj/BYIAmQRyQJSGlFKUaBVL7WgWR0CnKL98JD3NdX2UKGgGaAloD0MIP47myIrEckCUhpRSlGgVS8doFkdApyjLi++M63V9lChoBmgJaA9DCMrd5/hoUHBAlIaUUpRoFUvJaBZHQKco+YKIBR11fZQoaAZoCWgPQwikw0MYP3FMQJSGlFKUaBVLqGgWR0CnKQ62F36idX2UKGgGaAloD0MIelG7XwUbckCUhpRSlGgVS9poFkdApykqwfQrtnV9lChoBmgJaA9DCKzijczjhnJAlIaUUpRoFU0KAWgWR0CnKUxx1gYxdX2UKGgGaAloD0MIYYvdPqvbcUCUhpRSlGgVS7poFkdApyluuFHrhXV9lChoBmgJaA9DCL9lTpcF+XBAlIaUUpRoFUvGaBZHQKcpoJ40Mw11fZQoaAZoCWgPQwiflEkNbXw7QJSGlFKUaBVLc2gWR0CnKgIZZSvUdX2UKGgGaAloD0MIsz9Qbts9c0CUhpRSlGgVS9xoFkdApyoQI6bONnV9lChoBmgJaA9DCE2jycWYJHJAlIaUUpRoFUvHaBZHQKcqJY/3WWh1fZQoaAZoCWgPQwjrHW6Hxv5wQJSGlFKUaBVLyGgWR0CnKiyBbwBpdX2UKGgGaAloD0MIy4XKv1ZScUCUhpRSlGgVS7toFkdApyqEQiA2AHV9lChoBmgJaA9DCE/KpIY2kHBAlIaUUpRoFUvraBZHQKcqlLeyiVV1fZQoaAZoCWgPQwgu/rYnCPFzQJSGlFKUaBVL5GgWR0CnKrlwLmZFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1230, "n_steps": 512, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ca52bc78cb0bfcce47d7d0581c7f36072d965de17351736c52c23928b2f59fa
|
3 |
+
size 212937
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 249.509913622869, "std_reward": 87.08485687375934, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T13:31:41.150721"}
|