File size: 2,016 Bytes
4dfc52f
 
 
b88a39e
403475c
3c45707
403475c
55e7080
7b89a71
 
 
 
 
 
 
 
55e7080
96bce5f
7b89a71
 
e16f512
 
96bce5f
 
 
55e7080
96bce5f
 
7b89a71
 
e16f512
 
96bce5f
 
 
55e7080
96bce5f
 
7b89a71
 
e16f512
 
96bce5f
 
 
55e7080
96bce5f
7b89a71
 
e16f512
 
96bce5f
4dfc52f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
license: other
---
## AIDO.DNA-300M

For a more detailed description, refer to the SOTA model in this collection https://huggingface.co/genbio-ai/AIDO.DNA-7B

## How to Use
### Build any downstream models from this backbone with ModelGenerator
For more information, visit: [Model Generator](https://github.com/genbio-ai/modelgenerator)
```bash
mgen fit --model SequenceClassification --model.backbone aido_dna_300m --data SequenceClassificationDataModule --data.path <hf_or_local_path_to_your_dataset>
mgen test --model SequenceClassification --model.backbone aido_dna_300m --data SequenceClassificationDataModule --data.path <hf_or_local_path_to_your_dataset>
```

### Or use directly in Python
#### Embedding
```python
from modelgenerator.tasks import Embed
model = Embed.from_config({"model.backbone": "aido_dna_300m"}).eval()
transformed_batch = model.transform({"sequences": ["ACGT", "AGCT"]})
embedding = model(transformed_batch)
print(embedding.shape)
print(embedding)
```
#### Sequence Level Classification
```python
import torch
from modelgenerator.tasks import SequenceClassification
model = SequenceClassification.from_config({"model.backbone": "aido_dna_300m", "model.n_classes": 2}).eval()
transformed_batch = model.transform({"sequences": ["ACGT", "AGCT"]})
logits = model(transformed_batch)
print(logits)
print(torch.argmax(logits, dim=-1))
```
#### Token Level Classification
```python
import torch
from modelgenerator.tasks import TokenClassification
model = TokenClassification.from_config({"model.backbone": "aido_dna_300m", "model.n_classes": 3}).eval()
transformed_batch = model.transform({"sequences": ["ACGT", "AGCT"]})
logits = model(transformed_batch)
print(logits)
print(torch.argmax(logits, dim=-1))
```
#### Regression
```python
from modelgenerator.tasks import SequenceRegression
model = SequenceRegression.from_config({"model.backbone": "aido_dna_300m"}).eval()
transformed_batch = model.transform({"sequences": ["ACGT", "AGCT"]})
logits = model(transformed_batch)
print(logits)
```