ppo-LunarLander-v2 / config.json
george-chen's picture
Upload PPO LunarLander-v2 trained agent
b346201 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faae7346560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faae73465f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faae7346680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faae7346710>", "_build": "<function ActorCriticPolicy._build at 0x7faae73467a0>", "forward": "<function ActorCriticPolicy.forward at 0x7faae7346830>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7faae73468c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faae7346950>", "_predict": "<function ActorCriticPolicy._predict at 0x7faae73469e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faae7346a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faae7346b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faae7346b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7faa890bb780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736498243674585673, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1w2ruuaYO6y3thtmLbFLH0pJI2fNuDNQAAgD8AAIA/zTSzPBQIgbrjf0O7tbsDtrrDgzpjpF86AACAPwAAgD/oAJy+PR2IP2V5Tj3R09C+0Yb9vq3vxT0AAAAAAAAAAJrL/jxSQPS5bof7u8B8OzZfeZ66jMuutQAAgD8AAIA/QGTlPSGXjj72CwK+YWGDvgqi3TxaTxQ9AAAAAAAAAAAArmw8rs+HOYKn2joN8zI1uJavO7okA7oAAIA/AACAP5q7/zzDRWW6MulLu3WWibYaeW+7SvtuOgAAgD8AAIA/gI5BvVznXbqEp462NVBJsYjYKLuMfKg1AACAPwAAgD+aQOK8uEbhufZVIzigt1MzkBMauhV/QbcAAIA/AACAPzMBrzyPpiS6SpNSutD5RTXk05q63kq8tAAAgD8AAIA/5vw4PcOJbLow1XA6Wj6/NMmI7rnanYm5AACAPwAAgD+aQX49adBQPaxBv70ZAJm+hw/HPZhV1DwAAAAAAAAAAAAs8ztYHbU//mtAP1e8Nz6Wxgy8eVguvgAAAAAAAAAAZsLVvI8+BbqAFU46q+4jNsGxZru7AnS5AACAPwAAgD/mLVC9P1OkPxplgL6aVt2+k77wvTdKgL4AAAAAAAAAAMCekj1vrZ8/xmtvPr+Km75ehqQ97n+GPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDW/ALy+YdCMAWyUS/6MAXSUR0CVxyvLX+VDdX2UKGgGR0Bk1pTS9du6aAdN6ANoCEdAlclBZpztC3V9lChoBkdAKVjYAbQ1JmgHS+JoCEdAlcotsabWmXV9lChoBkdAZNlG+9Jz1mgHTegDaAhHQJXKp4iX6ZZ1fZQoaAZHQG7s8an7521oB03aAmgIR0CVziBcRlH0dX2UKGgGR0Bqw+5H3DekaAdN6ANoCEdAlc7p+x4Y8HV9lChoBkdAZvB+85CF9WgHTegDaAhHQJXPofhddE91fZQoaAZHQGU8BAfMfRxoB03oA2gIR0CVz/e1rqMWdX2UKGgGR0BjeensLORlaAdN6ANoCEdAldL+doWYW3V9lChoBkdAZIbOUMXrMWgHTegDaAhHQJXWcJD3M6l1fZQoaAZHQGQFeBxxT85oB03oA2gIR0CV1/iC8OCodX2UKGgGR0BjDEhib2DhaAdN6ANoCEdAld3L3wkPc3V9lChoBkdAceHvJiiItWgHTSYCaAhHQJXetkGzKLd1fZQoaAZHP/Y3A2ycCo1oB0vTaAhHQJXkK3kPtlZ1fZQoaAZHQG88L8zhxYJoB030AWgIR0CV5LCEpRXPdX2UKGgGR0BoZ0SIxgy/aAdN6ANoCEdAledC+L3sX3V9lChoBkdAXteFfzBhyGgHTegDaAhHQJXqWuieumt1fZQoaAZHQGfH7CBPKuBoB03oA2gIR0CV7LuU2UB5dX2UKGgGR0BiXnacqe9SaAdN6ANoCEdAlg0H5WRzR3V9lChoBkdAYPtJJ5E+gWgHTegDaAhHQJYQYljVhCt1fZQoaAZHQHD/jwx33YdoB01RAWgIR0CWEfr/KhcrdX2UKGgGR0BmSVlwtJ4CaAdN6ANoCEdAlhJMV1wHaHV9lChoBkdAY51pxm03O2gHTegDaAhHQJYXdXLeQ+51fZQoaAZHQGIAk/SpiqhoB03oA2gIR0CWGHywfQrudX2UKGgGR0Bj3EK5TZQIaAdN6ANoCEdAlhky13MY/HV9lChoBkdAZMTkXk5p8GgHTegDaAhHQJYZhlwtJ4B1fZQoaAZHQGk9wZXMhX9oB03oA2gIR0CWHI+Eh7mddX2UKGgGR0BTHHA/LTx5aAdNCgFoCEdAlh5m1twaSHV9lChoBkdAZm7OXVsk6mgHTegDaAhHQJYhNybQTmJ1fZQoaAZHQFAPP7vXsgNoB0vGaAhHQJYlXbzshPl1fZQoaAZHQGljPp6hQFdoB03oA2gIR0CWJXn6VMVUdX2UKGgGR0BlGj2alUIcaAdN6ANoCEdAliYWKMvRJHV9lChoBkdAZ37K02LpA2gHTegDaAhHQJYprzbvgFZ1fZQoaAZHQF9CcbR4QjFoB03oA2gIR0CWKgC9h7VsdX2UKGgGR0BwdW1a4c3maAdNdQFoCEdAlioYuXeFc3V9lChoBkdAYRXKAavRq2gHTegDaAhHQJYsE9bHIZJ1fZQoaAZHQGgZBf8dgfFoB03oA2gIR0CWLt3JxNqQdX2UKGgGR0BzkJQ79ycTaAdNeAFoCEdAli8eK8+Ro3V9lChoBkdAQxh4Y77sOWgHS+1oCEdAljRDUAksz3V9lChoBkdAZIux1xKg7GgHTegDaAhHQJZSqWfK6nR1fZQoaAZHQHEun6Q/5cloB02oA2gIR0CWUv3x4IKMdX2UKGgGR0A+kjYqXnhbaAdL6WgIR0CWVHbGFSKndX2UKGgGR0BlLkeZG8VYaAdN6ANoCEdAllYhjJ+2E3V9lChoBkdAYm0epXIU8GgHTegDaAhHQJZaW8scyWR1fZQoaAZHQGkYE7OmixpoB03oA2gIR0CWW0gQ6IWQdX2UKGgGR0BlLQf0VafSaAdN6ANoCEdAllwv8qFyrHV9lChoBkdAcKGH+ZPVNGgHTZEDaAhHQJZlTx6OYIB1fZQoaAZHQGSjIWP91lpoB03oA2gIR0CWZV3vhIe6dX2UKGgGR0Bi3W9L6DXfaAdN6ANoCEdAlmnAjD8+A3V9lChoBkdAYl2W7e2uxWgHTegDaAhHQJZqZGb1AZ91fZQoaAZHQGcDS4FzMidoB03oA2gIR0CWbgVBD5TIdX2UKGgGR0BmuW4Vh1DCaAdN6ANoCEdAlm5XH/95yHV9lChoBkdAZn0CvHLidmgHTegDaAhHQJZwzy8SPEN1fZQoaAZHQGhDd1+y7f5oB03oA2gIR0CWdGZXuE26dX2UKGgGR0BpM+i+L3sYaAdN6ANoCEdAlnTFvIfbK3V9lChoBkdATBrVx0dRzmgHS+5oCEdAlnuKt1ZDA3V9lChoBkdAcE3Drqt5lmgHTRoCaAhHQJaCs8La24N1fZQoaAZHQGhVDmjj7yhoB03oA2gIR0CWhyo2GZeBdX2UKGgGR0BluRaePJaJaAdN6ANoCEdAlod6ySmqHXV9lChoBkdAZ7tujRD1G2gHTegDaAhHQJaaEpMHryF1fZQoaAZHQHKYNcfNiYtoB01IAmgIR0CWmtbutwJgdX2UKGgGR0BlvphDw6QvaAdN6ANoCEdAlpuZC0F8onV9lChoBkdAYXIVCXyAhGgHTegDaAhHQJafS2c8Tzx1fZQoaAZHQGMxLsjVx0doB03oA2gIR0CWoAzFuNxVdX2UKGgGR0BkicTxoZhsaAdN6ANoCEdAlqC4RRMviHV9lChoBkdAN/HzpX6qKmgHS+RoCEdAlqQ3yiEg4nV9lChoBkdAckuRm9QGfWgHTcQCaAhHQJanZTUAks11fZQoaAZHQGh3TEit7rtoB03oA2gIR0CWqzfJFLFodX2UKGgGR0Bk+jvNNahYaAdN6ANoCEdAlrJd4/u9e3V9lChoBkdAY22e6qbSZ2gHTegDaAhHQJa2e7EpAlh1fZQoaAZHQHAGcabWmP5oB02RAmgIR0CWu3bEgntwdX2UKGgGR0BkvaPsAvL6aAdN6ANoCEdAlrwwflp48nV9lChoBkdAcpW6GgzxgGgHTeUDaAhHQJa8VYuCf6J1fZQoaAZHQF+NdyT6i0xoB03oA2gIR0CWwXUahpQDdX2UKGgGR0BwgwXaakRBaAdNOAJoCEdAlsMoS6DoQnV9lChoBkdAZuQc0cfeUWgHTegDaAhHQJbG6K8+Ro11fZQoaAZHQGN4k43m3fBoB03oA2gIR0CWyxTxXnyNdX2UKGgGR0BmyXOpsGgSaAdN6ANoCEdAluAM/Y8MeHV9lChoBkdAYNyu14Pf9GgHTegDaAhHQJbhWYkVvdd1fZQoaAZHQG7p6QV9F4NoB02+AWgIR0CW5YMDwH7hdX2UKGgGR0Bp5Z2U0Nz9aAdN6ANoCEdAlublwtJ4B3V9lChoBkdAY9wjlgc94mgHTegDaAhHQJbnxXq7iAF1fZQoaAZHQGeBWVNYbKloB03oA2gIR0CW6IXJ5mh/dX2UKGgGR0BtAOK64Ds/aAdNfgJoCEdAlulB15jYqXV9lChoBkdAZFdirDIikmgHTegDaAhHQJbujGdZq211fZQoaAZHQGCwumR/3FloB03oA2gIR0CW8U4smOU/dX2UKGgGR0BjGJrxiG34aAdN6ANoCEdAlvaEWM0gsHV9lChoBkdAb51gqmTC+GgHTcgBaAhHQJb+m/O+qR51fZQoaAZHQGLneZG8VYZoB03oA2gIR0CXANzv7WNFdX2UKGgGR0BkmFSMtK7JaAdN6ANoCEdAlwGpGe+VT3V9lChoBkdAcPbI3zcynGgHTTACaAhHQJcDIlUp/gB1fZQoaAZHQG1fLsSkCV9oB00CAmgIR0CXA15y2hIwdX2UKGgGR0BkoR+2E0zkaAdN6ANoCEdAlwbqfWcz7HV9lChoBkdAaFlkz41xbWgHTegDaAhHQJcJLv0AcT91fZQoaAZHQEnnDUmUnohoB0u5aAhHQJcLNzq8lHB1fZQoaAZHQGWGfjbSJCVoB03oA2gIR0CXDlS3solVdX2UKGgGR0BmtP3rUsnRaAdN6ANoCEdAlxUY73fygHV9lChoBkdAQksEs8PnS2gHS9NoCEdAlxfH0TURWnV9lChoBkdAZTSlgMMI/2gHTegDaAhHQJcYVJyyUs51fZQoaAZHQGDKq508vEloB03oA2gIR0CXGWnhbW3CdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}