Updates model card
Browse filesSigned-off-by: Giovani <[email protected]>
README.md
CHANGED
@@ -14,9 +14,9 @@ tags:
|
|
14 |
|
15 |
<!-- Provide a quick summary of what the model is/does. -->
|
16 |
|
17 |
-
This is a **[
|
18 |
-
the **
|
19 |
-
[
|
20 |
|
21 |
## Model Details
|
22 |
|
@@ -44,7 +44,7 @@ the **ASSIN2 (Avaliação de Similaridade Semântica e Inferência Textual)** co
|
|
44 |
|
45 |
### Direct Use
|
46 |
|
47 |
-
This fine-tuned version of [
|
48 |
Language Inference (NLI), which is a text classification task.
|
49 |
|
50 |
<!-- <div id="assin_function">
|
@@ -64,7 +64,7 @@ $$
|
|
64 |
|
65 |
The *(premise, hypothesis)* entailment definition used is the same as the one found in Salvatore's paper [1].
|
66 |
|
67 |
-
Therefore, this fine-tuned version of [
|
68 |
|
69 |
<!-- ## Bias, Risks, and Limitations
|
70 |
|
@@ -77,7 +77,7 @@ Therefore, this fine-tuned version of [XLM-RoBERTa-base](https://huggingface.co/
|
|
77 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
78 |
import torch
|
79 |
|
80 |
-
model_path = "giotvr/
|
81 |
premise = "As mudanças climáticas são uma ameaça séria para a biodiversidade do planeta."
|
82 |
hypothesis ="A biodiversidade do planeta é seriamente ameaçada pelas mudanças climáticas."
|
83 |
tokenizer = XLMRobertaTokenizer.from_pretrained(model_path, use_auth_token=True)
|
@@ -112,7 +112,7 @@ Use the code below to get started with the model.
|
|
112 |
|
113 |
- **Train Dataset**: [ASSIN](https://huggingface.co/datasets/assin) <br>
|
114 |
|
115 |
-
- **Evaluation Dataset used for Hyperparameter Tuning:** [
|
116 |
|
117 |
- **Test Datasets:**
|
118 |
- [ASSIN](https://huggingface.co/datasets/assin)'s test split
|
@@ -121,16 +121,15 @@ Use the code below to get started with the model.
|
|
121 |
|
122 |
|
123 |
---
|
124 |
-
This is a fine tuned version of
|
125 |
-
relationship between the members of such pairs. Such corpus is balanced with 7k *ptbr* (Brazilian Portuguese) sentence pairs.
|
126 |
|
127 |
### Fine-Tuning Procedure
|
128 |
|
129 |
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
130 |
The model's fine-tuning procedure can be summarized in three major subsequent tasks:
|
131 |
<ol type="i">
|
132 |
-
<li>**Data Processing:**</li> [
|
133 |
-
<li>**Hyperparameter Tuning:**</li>
|
134 |
<li>**Final Model Loading and Testing:**</li>
|
135 |
using the *cross-tests* approach described in the [this section](#evaluation), the models' performance were measured using different datasets and metrics.
|
136 |
</ol>
|
@@ -154,37 +153,39 @@ $$
|
|
154 |
|
155 |
The following hyperparameters were tested in order to maximize the evaluation accuracy.
|
156 |
|
157 |
-
- **Number of Training Epochs:** $(
|
158 |
- **Per Device Train Batch Size:** $(8,16,32)$
|
159 |
-
- **Learning Rate:** $(
|
160 |
|
161 |
|
162 |
-
The
|
163 |
|
164 |
|
165 |
#### Training Hyperparameters
|
166 |
|
167 |
The [hyperparameter tuning](#hyperparameter-tuning) performed yelded the following values:
|
168 |
|
169 |
-
- **Number of Training Epochs:** $
|
170 |
-
- **Per Device Train Batch Size:** $
|
171 |
- **Learning Rate:** $5e-5$
|
172 |
|
173 |
## Evaluation
|
174 |
|
175 |
### ASSIN
|
176 |
|
177 |
-
|
|
|
|
|
178 |
|
179 |
### ASSIN2
|
180 |
|
181 |
-
Testing this model in ASSIN2's test
|
182 |
|
183 |
### PLUE/MNLI
|
184 |
|
185 |
-
Testing this model in PLUE/MNLI was only possible by considering PLUE/MNLI's *contradiction* and *neutral* labels as *NONE* and PLUE/MNLI's *entailment* label as equivalent to the *ENTAILMENT* predicted by the model.
|
186 |
|
187 |
-
|
|
|
188 |
|
189 |
### Metrics
|
190 |
|
@@ -195,9 +196,9 @@ The model's performance metrics for each test dataset are presented separately.
|
|
195 |
|
196 |
| test set | accuracy | f1 score | precision | recall |
|
197 |
|----------|----------|----------|-----------|--------|
|
198 |
-
| assin |0.
|
199 |
-
| assin2 |0.
|
200 |
-
| plue/mnli|0.
|
201 |
|
202 |
## Model Examination
|
203 |
|
@@ -238,3 +239,4 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
238 |
<!--[2][Andrade, G. T. (2023) Modelos para Inferência em Linguagem Natural que entendem a Língua Portuguesa (train_assin_xlmr_base_results PAGES GO HERE)](https://linux.ime.usp.br/~giovani/)
|
239 |
|
240 |
[3][Andrade, G. T. (2023) Modelos para Inferência em Linguagem Natural que entendem a Língua Portuguesa (train_assin_xlmr_base_conclusions PAGES GO HERE)](https://linux.ime.usp.br/~giovani/) -->
|
|
|
|
14 |
|
15 |
<!-- Provide a quick summary of what the model is/does. -->
|
16 |
|
17 |
+
This is a **[BERTimbau-base](https://huggingface.co/neuralmind/bert-large-portuguese-cased) fine-tuned model** on 5K (premise, hypothesis) sentence pairs from
|
18 |
+
the **ASSIN (Avaliação de Similaridade Semântica e Inferência textual)** corpus. The original reference papers are:
|
19 |
+
[BERTimbau: Pretrained BERT Models for Brazilian Portuguese](https://www.researchgate.net/publication/345395208_BERTimbau_Pretrained_BERT_Models_for_Brazilian_Portuguese), [ASSIN: Avaliação de Similaridade Semântica e Inferência Textual](https://huggingface.co/datasets/assin), respectivelly. This model is suitable for Portuguese (from Brazil or Portugal).
|
20 |
|
21 |
## Model Details
|
22 |
|
|
|
44 |
|
45 |
### Direct Use
|
46 |
|
47 |
+
This fine-tuned version of [BERTimbau-base](https://huggingface.co/neuralmind/bert-large-portuguese-cased) performs Natural
|
48 |
Language Inference (NLI), which is a text classification task.
|
49 |
|
50 |
<!-- <div id="assin_function">
|
|
|
64 |
|
65 |
The *(premise, hypothesis)* entailment definition used is the same as the one found in Salvatore's paper [1].
|
66 |
|
67 |
+
Therefore, this fine-tuned version of [BERTimbau-base](https://huggingface.co/neuralmind/bert-large-portuguese-cased) classifies pairs of sentences in the form *(premise, hypothesis)* into the classes *ENTAILMENT*, *NONE* and *PARAPHRASE*.
|
68 |
|
69 |
<!-- ## Bias, Risks, and Limitations
|
70 |
|
|
|
77 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
78 |
import torch
|
79 |
|
80 |
+
model_path = "giotvr/bertimbau_large_assin_fine_tuned"
|
81 |
premise = "As mudanças climáticas são uma ameaça séria para a biodiversidade do planeta."
|
82 |
hypothesis ="A biodiversidade do planeta é seriamente ameaçada pelas mudanças climáticas."
|
83 |
tokenizer = XLMRobertaTokenizer.from_pretrained(model_path, use_auth_token=True)
|
|
|
112 |
|
113 |
- **Train Dataset**: [ASSIN](https://huggingface.co/datasets/assin) <br>
|
114 |
|
115 |
+
- **Evaluation Dataset used for Hyperparameter Tuning:** [PLUE/MNLI](https://huggingface.co/datasets/dlb/plue)'s validation split
|
116 |
|
117 |
- **Test Datasets:**
|
118 |
- [ASSIN](https://huggingface.co/datasets/assin)'s test split
|
|
|
121 |
|
122 |
|
123 |
---
|
124 |
+
This is a fine tuned version of [BERTimbau-base](https://huggingface.co/neuralmind/bert-large-portuguese-cased) using the [ASSIN](https://huggingface.co/datasets/assin) dataset. [ASSIN](https://huggingface.co/datasets/assin) is a corpus annotated with hypothesis/premise Portuguese sentence pairs suitable for detecting textual entailment, none or paraphrase relationships between the members of such pairs. Such corpus is balanced among the three classes.
|
|
|
125 |
|
126 |
### Fine-Tuning Procedure
|
127 |
|
128 |
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
129 |
The model's fine-tuning procedure can be summarized in three major subsequent tasks:
|
130 |
<ol type="i">
|
131 |
+
<li>**Data Processing:**</li> [ASSIN](https://huggingface.co/datasets/assin)'s *validation* and *train* splits were loaded from the **Hugging Face Hub** and processed afterwards;
|
132 |
+
<li>**Hyperparameter Tuning:**</li>[BERTimbau-base](https://huggingface.co/neuralmind/bert-large-portuguese-cased)'s hyperparameters were chosen with the help of the [Weights & Biases] API to track the results and upload the fine-tuned models;
|
133 |
<li>**Final Model Loading and Testing:**</li>
|
134 |
using the *cross-tests* approach described in the [this section](#evaluation), the models' performance were measured using different datasets and metrics.
|
135 |
</ol>
|
|
|
153 |
|
154 |
The following hyperparameters were tested in order to maximize the evaluation accuracy.
|
155 |
|
156 |
+
- **Number of Training Epochs:** $(2,3,4)$
|
157 |
- **Per Device Train Batch Size:** $(8,16,32)$
|
158 |
+
- **Learning Rate:** $(3e−5, 2e−5, 3e−5)$
|
159 |
|
160 |
|
161 |
+
The hyperparemeter tuning experiments were run and tracked using the [Weights & Biases' API](https://docs.wandb.ai/ref/python/public-api/api) and can be found at this [link](https://wandb.ai/gio_projs/assin_xlm_roberta_v5?workspace=user-giogvn).
|
162 |
|
163 |
|
164 |
#### Training Hyperparameters
|
165 |
|
166 |
The [hyperparameter tuning](#hyperparameter-tuning) performed yelded the following values:
|
167 |
|
168 |
+
- **Number of Training Epochs:** $2$
|
169 |
+
- **Per Device Train Batch Size:** $16$
|
170 |
- **Learning Rate:** $5e-5$
|
171 |
|
172 |
## Evaluation
|
173 |
|
174 |
### ASSIN
|
175 |
|
176 |
+
|
177 |
+
Testing this model in ASSIN's test set was straightforward as it was fine-tuned in its training set.
|
178 |
+
|
179 |
|
180 |
### ASSIN2
|
181 |
|
182 |
+
Testing this model in ASSIN2's test set was straightforward as ASSIN2 contains the same classes as ASSIN.
|
183 |
|
184 |
### PLUE/MNLI
|
185 |
|
|
|
186 |
|
187 |
+
Testing this model in PLUE/MNLI's test split required some translation of the *neutral* and *contradictions* classes found in it, because such classes are not present in ASSIN. Both were considered equivalent to ASSIN's *NONE* class. More details on such translation can be found in [Modelos para Inferência em Linguagem Natural que entendem a Língua Portuguesa](https://linux.ime.usp.br/~giovani/).
|
188 |
+
|
189 |
|
190 |
### Metrics
|
191 |
|
|
|
196 |
|
197 |
| test set | accuracy | f1 score | precision | recall |
|
198 |
|----------|----------|----------|-----------|--------|
|
199 |
+
| assin |0.92 |0.92 |0.92 |0.92 |
|
200 |
+
| assin2 |0.73 |0.72 |0.77 |0.73 |
|
201 |
+
| plue/mnli|0.49 |0.40 |0.35 |0.49 |
|
202 |
|
203 |
## Model Examination
|
204 |
|
|
|
239 |
<!--[2][Andrade, G. T. (2023) Modelos para Inferência em Linguagem Natural que entendem a Língua Portuguesa (train_assin_xlmr_base_results PAGES GO HERE)](https://linux.ime.usp.br/~giovani/)
|
240 |
|
241 |
[3][Andrade, G. T. (2023) Modelos para Inferência em Linguagem Natural que entendem a Língua Portuguesa (train_assin_xlmr_base_conclusions PAGES GO HERE)](https://linux.ime.usp.br/~giovani/) -->
|
242 |
+
|