gmunkhtur commited on
Commit
4210ddc
·
verified ·
1 Parent(s): c70ae6a

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:11113
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: Эр цэргийн баярыг тохиолдуулан тоглолт болно
12
+ sentences:
13
+ - Тоглолт эрчүүдэд зориулагдсан.
14
+ - Бие даасан тоглолт болно.
15
+ - Уг тоглолтыг Атлантад төвтэй хүмүүнлэгийн байгууллагаас зохион байгуулж байгаа
16
+ ажээ.
17
+ - source_sentence: Энэ ном нь МУИС-ийн оюутны бүтээл юм
18
+ sentences:
19
+ - Тоглолтонд дэлхийн алдартай хийлч оролцоно.
20
+ - Дөрвөн жилийн өмнө Нью-Йоркийн Филармонийн уран бүтээлчид Пхеньян хотод тоглолт
21
+ хийж байсан.
22
+ - Энэ ном нь утга зохиолын шүүмжлэлийн салбарт хувь нэмэр оруулжээ.
23
+ - source_sentence: “Paprika” кино нь Японы анимэйшн, шинжлэх ухаан, танин мэдэхүйн
24
+ бүтээл юм
25
+ sentences:
26
+ - “Paprika” киноны найруулагчаар Satoshi Kon ажиллажээ
27
+ - Элчин сайд Ш.Алтангэрэл арга хэмжээг зохион байгуулсан хүмүүст талархал илэрхийллээ.
28
+ - Уран бүтээлчдийн санаачилгаар.
29
+ - source_sentence: Пэрэнлэйн Нямлхагва бол Д.Нацагдоржийн шагналт яруу найрагч юм
30
+ sentences:
31
+ - ',“Ньюанс” хамтлагийн тоглолт ОХУ-ын олон хотод болсон.'
32
+ - Зохиол нь өгүүлэмж сайтай, утгын найруулгын хувьд сонгодог
33
+ - Пэрэнлэйн Нямлхагвагийн тоглолт удахгүй болно
34
+ - source_sentence: Тэд “Зэрлэг цэцэгсийн хүлэмж” кино хийсэн
35
+ sentences:
36
+ - Наадам "Давалгаа" тайзан дээр болно.
37
+ - Францын агуу дуучин эмэгтэй Эдит Пиаф.
38
+ - Тэдний хоёр дахь бүтээл “Зүрхээр наадагч” кино юм.
39
+ pipeline_tag: sentence-similarity
40
+ library_name: sentence-transformers
41
+ metrics:
42
+ - pearson_cosine
43
+ - spearman_cosine
44
+ model-index:
45
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
46
+ results:
47
+ - task:
48
+ type: semantic-similarity
49
+ name: Semantic Similarity
50
+ dataset:
51
+ name: sts dev
52
+ type: sts-dev
53
+ metrics:
54
+ - type: pearson_cosine
55
+ value: 0.5175384750107511
56
+ name: Pearson Cosine
57
+ - type: spearman_cosine
58
+ value: 0.48776566583188496
59
+ name: Spearman Cosine
60
+ ---
61
+
62
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
63
+
64
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
65
+
66
+ ## Model Details
67
+
68
+ ### Model Description
69
+ - **Model Type:** Sentence Transformer
70
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c -->
71
+ - **Maximum Sequence Length:** 128 tokens
72
+ - **Output Dimensionality:** 384 dimensions
73
+ - **Similarity Function:** Cosine Similarity
74
+ - **Training Dataset:**
75
+ - csv
76
+ <!-- - **Language:** Unknown -->
77
+ <!-- - **License:** Unknown -->
78
+
79
+ ### Model Sources
80
+
81
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
82
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
83
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
84
+
85
+ ### Full Model Architecture
86
+
87
+ ```
88
+ SentenceTransformer(
89
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
90
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
91
+ )
92
+ ```
93
+
94
+ ## Usage
95
+
96
+ ### Direct Usage (Sentence Transformers)
97
+
98
+ First install the Sentence Transformers library:
99
+
100
+ ```bash
101
+ pip install -U sentence-transformers
102
+ ```
103
+
104
+ Then you can load this model and run inference.
105
+ ```python
106
+ from sentence_transformers import SentenceTransformer
107
+
108
+ # Download from the 🤗 Hub
109
+ model = SentenceTransformer("gmunkhtur/paraphrase-multilingual-minilm-l12-v3-mn")
110
+ # Run inference
111
+ sentences = [
112
+ 'Тэд “Зэрлэг цэцэгсийн хүлэмж” кино хийсэн',
113
+ 'Тэдний хоёр дахь бүтээл “Зүрхээр наадагч” кино юм.',
114
+ 'Францын агуу дуучин эмэгтэй Эдит Пиаф.',
115
+ ]
116
+ embeddings = model.encode(sentences)
117
+ print(embeddings.shape)
118
+ # [3, 384]
119
+
120
+ # Get the similarity scores for the embeddings
121
+ similarities = model.similarity(embeddings, embeddings)
122
+ print(similarities.shape)
123
+ # [3, 3]
124
+ ```
125
+
126
+ <!--
127
+ ### Direct Usage (Transformers)
128
+
129
+ <details><summary>Click to see the direct usage in Transformers</summary>
130
+
131
+ </details>
132
+ -->
133
+
134
+ <!--
135
+ ### Downstream Usage (Sentence Transformers)
136
+
137
+ You can finetune this model on your own dataset.
138
+
139
+ <details><summary>Click to expand</summary>
140
+
141
+ </details>
142
+ -->
143
+
144
+ <!--
145
+ ### Out-of-Scope Use
146
+
147
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
148
+ -->
149
+
150
+ ## Evaluation
151
+
152
+ ### Metrics
153
+
154
+ #### Semantic Similarity
155
+
156
+ * Dataset: `sts-dev`
157
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
158
+
159
+ | Metric | Value |
160
+ |:--------------------|:-----------|
161
+ | pearson_cosine | 0.5175 |
162
+ | **spearman_cosine** | **0.4878** |
163
+
164
+ <!--
165
+ ## Bias, Risks and Limitations
166
+
167
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
168
+ -->
169
+
170
+ <!--
171
+ ### Recommendations
172
+
173
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
174
+ -->
175
+
176
+ ## Training Details
177
+
178
+ ### Training Dataset
179
+
180
+ #### csv
181
+
182
+ * Dataset: csv
183
+ * Size: 11,113 training samples
184
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
185
+ * Approximate statistics based on the first 1000 samples:
186
+ | | sentence1 | sentence2 | score |
187
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
188
+ | type | string | string | float |
189
+ | details | <ul><li>min: 4 tokens</li><li>mean: 14.51 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.07 tokens</li><li>max: 86 tokens</li></ul> | <ul><li>min: -0.09</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
190
+ * Samples:
191
+ | sentence1 | sentence2 | score |
192
+ |:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
193
+ | <code>Тэднээс 6 нь л ажиллагаатай юм</code> | <code>,Sothеbey’s-ийн зарсан төхөөрөмж ажилладаг гэж Sothеbey’s-ийн сайтан дээрх барааны танилцуулгад бичсэн байна.</code> | <code>0.0607873052358627</code> |
194
+ | <code>Түүний хит дуу нь "Миллион алых розe"</code> | <code>Тэрбээр "Миллион алых розe" дууг олон хэлээр дуулсан.</code> | <code>0.7139256596565247</code> |
195
+ | <code>“Нисванис” хамтлаг олон арга хэмжээ зохион байгуулдаг</code> | <code>Хамтлагийн тоглолт нь рок цугларалт, шоу юм</code> | <code>0.454399824142456</code> |
196
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
197
+ ```json
198
+ {
199
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
200
+ }
201
+ ```
202
+
203
+ ### Evaluation Dataset
204
+
205
+ #### csv
206
+
207
+ * Dataset: csv
208
+ * Size: 11,113 evaluation samples
209
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
210
+ * Approximate statistics based on the first 1000 samples:
211
+ | | sentence1 | sentence2 | score |
212
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------|
213
+ | type | string | string | float |
214
+ | details | <ul><li>min: 4 tokens</li><li>mean: 14.52 tokens</li><li>max: 95 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.92 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: -0.09</li><li>mean: 0.48</li><li>max: 0.98</li></ul> |
215
+ * Samples:
216
+ | sentence1 | sentence2 | score |
217
+ |:--------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|:--------------------------------|
218
+ | <code>Америк хөгжмийн зохиолуудыг бэлтгэл хийж байж тоглодог</code> | <code>Монгол, Америк хоёр улсын хөгжмийн нотны тэмдэглэгээ өөр.</code> | <code>0.5598467588424683</code> |
219
+ | <code>Энэхүү хэсэг нь дөрвөн ангитай байна.</code> | <code>Зохиолч Б.Мөнхболд энэхүү хөгжмийг бичихдээ Галдан бошготийн түүхийг таван жил судласан.</code> | <code>0.2354833334684372</code> |
220
+ | <code>Д.Шинэцог удахгүй тоглолт хийхээр төлөвлөж байна</code> | <code>Д.Шинэцог Монголын шилдэг хөгжмийн зохиолчдын бүтээлийг тоглоно</code> | <code>0.3461045920848846</code> |
221
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
222
+ ```json
223
+ {
224
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
225
+ }
226
+ ```
227
+
228
+ ### Training Hyperparameters
229
+ #### Non-Default Hyperparameters
230
+
231
+ - `eval_strategy`: steps
232
+ - `per_device_train_batch_size`: 16
233
+ - `per_device_eval_batch_size`: 16
234
+ - `num_train_epochs`: 1
235
+ - `warmup_ratio`: 0.1
236
+ - `fp16`: True
237
+ - `batch_sampler`: no_duplicates
238
+
239
+ #### All Hyperparameters
240
+ <details><summary>Click to expand</summary>
241
+
242
+ - `overwrite_output_dir`: False
243
+ - `do_predict`: False
244
+ - `eval_strategy`: steps
245
+ - `prediction_loss_only`: True
246
+ - `per_device_train_batch_size`: 16
247
+ - `per_device_eval_batch_size`: 16
248
+ - `per_gpu_train_batch_size`: None
249
+ - `per_gpu_eval_batch_size`: None
250
+ - `gradient_accumulation_steps`: 1
251
+ - `eval_accumulation_steps`: None
252
+ - `torch_empty_cache_steps`: None
253
+ - `learning_rate`: 5e-05
254
+ - `weight_decay`: 0.0
255
+ - `adam_beta1`: 0.9
256
+ - `adam_beta2`: 0.999
257
+ - `adam_epsilon`: 1e-08
258
+ - `max_grad_norm`: 1.0
259
+ - `num_train_epochs`: 1
260
+ - `max_steps`: -1
261
+ - `lr_scheduler_type`: linear
262
+ - `lr_scheduler_kwargs`: {}
263
+ - `warmup_ratio`: 0.1
264
+ - `warmup_steps`: 0
265
+ - `log_level`: passive
266
+ - `log_level_replica`: warning
267
+ - `log_on_each_node`: True
268
+ - `logging_nan_inf_filter`: True
269
+ - `save_safetensors`: True
270
+ - `save_on_each_node`: False
271
+ - `save_only_model`: False
272
+ - `restore_callback_states_from_checkpoint`: False
273
+ - `no_cuda`: False
274
+ - `use_cpu`: False
275
+ - `use_mps_device`: False
276
+ - `seed`: 42
277
+ - `data_seed`: None
278
+ - `jit_mode_eval`: False
279
+ - `use_ipex`: False
280
+ - `bf16`: False
281
+ - `fp16`: True
282
+ - `fp16_opt_level`: O1
283
+ - `half_precision_backend`: auto
284
+ - `bf16_full_eval`: False
285
+ - `fp16_full_eval`: False
286
+ - `tf32`: None
287
+ - `local_rank`: 0
288
+ - `ddp_backend`: None
289
+ - `tpu_num_cores`: None
290
+ - `tpu_metrics_debug`: False
291
+ - `debug`: []
292
+ - `dataloader_drop_last`: False
293
+ - `dataloader_num_workers`: 0
294
+ - `dataloader_prefetch_factor`: None
295
+ - `past_index`: -1
296
+ - `disable_tqdm`: False
297
+ - `remove_unused_columns`: True
298
+ - `label_names`: None
299
+ - `load_best_model_at_end`: False
300
+ - `ignore_data_skip`: False
301
+ - `fsdp`: []
302
+ - `fsdp_min_num_params`: 0
303
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
304
+ - `fsdp_transformer_layer_cls_to_wrap`: None
305
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
306
+ - `deepspeed`: None
307
+ - `label_smoothing_factor`: 0.0
308
+ - `optim`: adamw_torch
309
+ - `optim_args`: None
310
+ - `adafactor`: False
311
+ - `group_by_length`: False
312
+ - `length_column_name`: length
313
+ - `ddp_find_unused_parameters`: None
314
+ - `ddp_bucket_cap_mb`: None
315
+ - `ddp_broadcast_buffers`: False
316
+ - `dataloader_pin_memory`: True
317
+ - `dataloader_persistent_workers`: False
318
+ - `skip_memory_metrics`: True
319
+ - `use_legacy_prediction_loop`: False
320
+ - `push_to_hub`: False
321
+ - `resume_from_checkpoint`: None
322
+ - `hub_model_id`: None
323
+ - `hub_strategy`: every_save
324
+ - `hub_private_repo`: None
325
+ - `hub_always_push`: False
326
+ - `gradient_checkpointing`: False
327
+ - `gradient_checkpointing_kwargs`: None
328
+ - `include_inputs_for_metrics`: False
329
+ - `include_for_metrics`: []
330
+ - `eval_do_concat_batches`: True
331
+ - `fp16_backend`: auto
332
+ - `push_to_hub_model_id`: None
333
+ - `push_to_hub_organization`: None
334
+ - `mp_parameters`:
335
+ - `auto_find_batch_size`: False
336
+ - `full_determinism`: False
337
+ - `torchdynamo`: None
338
+ - `ray_scope`: last
339
+ - `ddp_timeout`: 1800
340
+ - `torch_compile`: False
341
+ - `torch_compile_backend`: None
342
+ - `torch_compile_mode`: None
343
+ - `dispatch_batches`: None
344
+ - `split_batches`: None
345
+ - `include_tokens_per_second`: False
346
+ - `include_num_input_tokens_seen`: False
347
+ - `neftune_noise_alpha`: None
348
+ - `optim_target_modules`: None
349
+ - `batch_eval_metrics`: False
350
+ - `eval_on_start`: False
351
+ - `use_liger_kernel`: False
352
+ - `eval_use_gather_object`: False
353
+ - `average_tokens_across_devices`: False
354
+ - `prompts`: None
355
+ - `batch_sampler`: no_duplicates
356
+ - `multi_dataset_batch_sampler`: proportional
357
+
358
+ </details>
359
+
360
+ ### Training Logs
361
+ | Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine |
362
+ |:------:|:----:|:-------------:|:---------------:|:-----------------------:|
363
+ | 0 | 0 | - | - | 0.2082 |
364
+ | 0.1799 | 100 | 0.0433 | - | - |
365
+ | 0.3597 | 200 | 0.0367 | - | - |
366
+ | 0.5396 | 300 | 0.033 | - | - |
367
+ | 0.7194 | 400 | 0.0351 | - | - |
368
+ | 0.8993 | 500 | 0.0312 | 0.0329 | 0.4878 |
369
+
370
+
371
+ ### Framework Versions
372
+ - Python: 3.10.12
373
+ - Sentence Transformers: 3.3.1
374
+ - Transformers: 4.47.1
375
+ - PyTorch: 2.5.1+cu121
376
+ - Accelerate: 1.2.1
377
+ - Datasets: 3.2.0
378
+ - Tokenizers: 0.21.0
379
+
380
+ ## Citation
381
+
382
+ ### BibTeX
383
+
384
+ #### Sentence Transformers
385
+ ```bibtex
386
+ @inproceedings{reimers-2019-sentence-bert,
387
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
388
+ author = "Reimers, Nils and Gurevych, Iryna",
389
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
390
+ month = "11",
391
+ year = "2019",
392
+ publisher = "Association for Computational Linguistics",
393
+ url = "https://arxiv.org/abs/1908.10084",
394
+ }
395
+ ```
396
+
397
+ <!--
398
+ ## Glossary
399
+
400
+ *Clearly define terms in order to be accessible across audiences.*
401
+ -->
402
+
403
+ <!--
404
+ ## Model Card Authors
405
+
406
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
407
+ -->
408
+
409
+ <!--
410
+ ## Model Card Contact
411
+
412
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
413
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-minilm-l12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f09e59aa90dcab58ea5a0ab33b3589e1d9be4b4d16d95712f56a78ecd8f82f7
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 512,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
unigram.json ADDED
The diff for this file is too large to render. See raw diff