File size: 19,586 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import copy
from typing import Dict, List, Tuple

import torch
import torch.nn as nn
from mmcv.cnn import Linear
from mmdet.models.dense_heads import DETRHead
from mmdet.models.layers import inverse_sigmoid
from mmdet.models.utils import multi_apply
from mmdet.utils import InstanceList, OptInstanceList, reduce_mean
from mmengine.model import bias_init_with_prob
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet3d.registry import MODELS, TASK_UTILS
from .util import normalize_bbox


@MODELS.register_module()
class DETR3DHead(DETRHead):
    """Head of DETR3D.

    Args:
        with_box_refine (bool): Whether to refine the reference points
            in the decoder. Defaults to False.
        as_two_stage (bool) : Whether to generate the proposal from
            the outputs of encoder.
        transformer (obj:`ConfigDict`): ConfigDict is used for building
            the Encoder and Decoder.
        bbox_coder (obj:`ConfigDict`): Configs to build the bbox coder
        num_cls_fcs (int) : the number of layers in cls and reg branch
        code_weights (List[double]) : loss weights of
            (cx,cy,l,w,cz,h,sin(φ),cos(φ),v_x,v_y)
        code_size (int) : size of code_weights
    """

    def __init__(
            self,
            *args,
            with_box_refine=False,
            as_two_stage=False,
            transformer=None,
            bbox_coder=None,
            num_cls_fcs=2,
            code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2],
            code_size=10,
            **kwargs):
        self.with_box_refine = with_box_refine
        self.as_two_stage = as_two_stage
        if self.as_two_stage:
            transformer['as_two_stage'] = self.as_two_stage
        self.code_size = code_size
        self.code_weights = code_weights

        self.bbox_coder = TASK_UTILS.build(bbox_coder)
        self.pc_range = self.bbox_coder.pc_range
        self.num_cls_fcs = num_cls_fcs - 1
        super(DETR3DHead, self).__init__(
            *args, transformer=transformer, **kwargs)
        # DETR sampling=False, so use PseudoSampler, format the result
        sampler_cfg = dict(type='PseudoSampler')
        self.sampler = TASK_UTILS.build(sampler_cfg)

        self.code_weights = nn.Parameter(
            torch.tensor(self.code_weights, requires_grad=False),
            requires_grad=False)

    # forward_train -> loss
    def _init_layers(self):
        """Initialize classification branch and regression branch of head."""
        cls_branch = []
        for _ in range(self.num_reg_fcs):
            cls_branch.append(Linear(self.embed_dims, self.embed_dims))
            cls_branch.append(nn.LayerNorm(self.embed_dims))
            cls_branch.append(nn.ReLU(inplace=True))
        cls_branch.append(Linear(self.embed_dims, self.cls_out_channels))
        fc_cls = nn.Sequential(*cls_branch)

        reg_branch = []
        for _ in range(self.num_reg_fcs):
            reg_branch.append(Linear(self.embed_dims, self.embed_dims))
            reg_branch.append(nn.ReLU())
        reg_branch.append(Linear(self.embed_dims, self.code_size))
        reg_branch = nn.Sequential(*reg_branch)

        def _get_clones(module, N):
            return nn.ModuleList([copy.deepcopy(module) for i in range(N)])

        # last reg_branch is used to generate proposal from
        # encode feature map when as_two_stage is True.
        num_pred = (self.transformer.decoder.num_layers + 1) if \
            self.as_two_stage else self.transformer.decoder.num_layers

        if self.with_box_refine:
            self.cls_branches = _get_clones(fc_cls, num_pred)
            self.reg_branches = _get_clones(reg_branch, num_pred)
        else:
            self.cls_branches = nn.ModuleList(
                [fc_cls for _ in range(num_pred)])
            self.reg_branches = nn.ModuleList(
                [reg_branch for _ in range(num_pred)])

        if not self.as_two_stage:
            self.query_embedding = nn.Embedding(self.num_query,
                                                self.embed_dims * 2)

    def init_weights(self):
        """Initialize weights of the DeformDETR head."""
        self.transformer.init_weights()
        if self.loss_cls.use_sigmoid:
            bias_init = bias_init_with_prob(0.01)
            for m in self.cls_branches:
                nn.init.constant_(m[-1].bias, bias_init)

    def forward(self, mlvl_feats: List[Tensor], img_metas: List[Dict],
                **kwargs) -> Dict[str, Tensor]:
        """Forward function.

        Args:
            mlvl_feats (List[Tensor]): Features from the upstream
                network, each is a 5D-tensor with shape
                (B, N, C, H, W).
        Returns:
            all_cls_scores (Tensor): Outputs from the classification head,
                shape [nb_dec, bs, num_query, cls_out_channels]. Note
                cls_out_channels should includes background.
            all_bbox_preds (Tensor): Sigmoid outputs from the regression
                head with normalized coordinate format
                (cx, cy, l, w, cz, h, sin(φ), cos(φ), vx, vy).
                Shape [nb_dec, bs, num_query, 10].
        """
        query_embeds = self.query_embedding.weight
        hs, init_reference, inter_references = self.transformer(
            mlvl_feats,
            query_embeds,
            reg_branches=self.reg_branches if self.with_box_refine else None,
            img_metas=img_metas,
            **kwargs)
        hs = hs.permute(0, 2, 1, 3)
        outputs_classes = []
        outputs_coords = []

        for lvl in range(hs.shape[0]):
            if lvl == 0:
                reference = init_reference
            else:
                reference = inter_references[lvl - 1]
            reference = inverse_sigmoid(reference)
            outputs_class = self.cls_branches[lvl](hs[lvl])
            tmp = self.reg_branches[lvl](hs[lvl])  # shape: ([B, num_q, 10])
            # TODO: check the shape of reference
            assert reference.shape[-1] == 3
            tmp[..., 0:2] += reference[..., 0:2]
            tmp[..., 0:2] = tmp[..., 0:2].sigmoid()
            tmp[..., 4:5] += reference[..., 2:3]
            tmp[..., 4:5] = tmp[..., 4:5].sigmoid()

            tmp[..., 0:1] = \
                tmp[..., 0:1] * (self.pc_range[3] - self.pc_range[0]) \
                + self.pc_range[0]
            tmp[..., 1:2] = \
                tmp[..., 1:2] * (self.pc_range[4] - self.pc_range[1]) \
                + self.pc_range[1]
            tmp[..., 4:5] = \
                tmp[..., 4:5] * (self.pc_range[5] - self.pc_range[2]) \
                + self.pc_range[2]

            # TODO: check if using sigmoid
            outputs_coord = tmp
            outputs_classes.append(outputs_class)
            outputs_coords.append(outputs_coord)

        outputs_classes = torch.stack(outputs_classes)
        outputs_coords = torch.stack(outputs_coords)
        outs = {
            'all_cls_scores': outputs_classes,
            'all_bbox_preds': outputs_coords,
            'enc_cls_scores': None,
            'enc_bbox_preds': None,
        }
        return outs

    def _get_target_single(
            self,
            cls_score: Tensor,  # [query, num_cls]
            bbox_pred: Tensor,  # [query, 10]
            gt_instances_3d: InstanceList) -> Tuple[Tensor, ...]:
        """Compute regression and classification targets for a single image."""
        # turn bottm center into gravity center
        gt_bboxes = gt_instances_3d.bboxes_3d  # [num_gt, 9]
        gt_bboxes = torch.cat(
            (gt_bboxes.gravity_center, gt_bboxes.tensor[:, 3:]), dim=1)

        gt_labels = gt_instances_3d.labels_3d  # [num_gt, num_cls]
        # assigner and sampler: PseudoSampler
        assign_result = self.assigner.assign(
            bbox_pred, cls_score, gt_bboxes, gt_labels, gt_bboxes_ignore=None)
        sampling_result = self.sampler.sample(
            assign_result, InstanceData(priors=bbox_pred),
            InstanceData(bboxes_3d=gt_bboxes))
        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds

        # label targets
        num_bboxes = bbox_pred.size(0)
        labels = gt_bboxes.new_full((num_bboxes, ),
                                    self.num_classes,
                                    dtype=torch.long)
        labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds]
        label_weights = gt_bboxes.new_ones(num_bboxes)

        # bbox targets
        # theta in gt_bbox here is still a single scalar
        bbox_targets = torch.zeros_like(bbox_pred)[..., :self.code_size - 1]
        bbox_weights = torch.zeros_like(bbox_pred)
        # only matched query will learn from bbox coord
        bbox_weights[pos_inds] = 1.0

        # fix empty gt bug in multi gpu training
        if sampling_result.pos_gt_bboxes.shape[0] == 0:
            sampling_result.pos_gt_bboxes = \
                sampling_result.pos_gt_bboxes.reshape(0, self.code_size - 1)

        bbox_targets[pos_inds] = sampling_result.pos_gt_bboxes
        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                neg_inds)

    def get_targets(
            self,
            batch_cls_scores: List[Tensor],  # bs[num_q,num_cls]
            batch_bbox_preds: List[Tensor],  # bs[num_q,10]
            batch_gt_instances_3d: InstanceList) -> tuple():
        """"Compute regression and classification targets for a batch image for
        a single decoder layer.

        Args:
            batch_cls_scores (list[Tensor]): Box score logits from a single
                decoder layer for each image with shape [num_query,
                cls_out_channels].
            batch_bbox_preds (list[Tensor]): Sigmoid outputs from a single
                decoder layer for each image, with normalized coordinate
                (cx,cy,l,w,cz,h,sin(φ),cos(φ),v_x,v_y) and
                shape [num_query, 10]
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes_3d``、``labels_3d``.
        Returns:
            tuple: a tuple containing the following targets.
                - labels_list (list[Tensor]): Labels for all images.
                - label_weights_list (list[Tensor]): Label weights for all \
                    images.
                - bbox_targets_list (list[Tensor]): BBox targets for all \
                    images.
                - bbox_weights_list (list[Tensor]): BBox weights for all \
                    images.
                - num_total_pos (int): Number of positive samples in all \
                    images.
                - num_total_neg (int): Number of negative samples in all \
                    images.
        """
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         pos_inds_list, neg_inds_list) = multi_apply(self._get_target_single,
                                                     batch_cls_scores,
                                                     batch_bbox_preds,
                                                     batch_gt_instances_3d)

        num_total_pos = sum((inds.numel() for inds in pos_inds_list))
        num_total_neg = sum((inds.numel() for inds in neg_inds_list))
        return (labels_list, label_weights_list, bbox_targets_list,
                bbox_weights_list, num_total_pos, num_total_neg)

    def loss_by_feat_single(
        self,
        batch_cls_scores: Tensor,  # bs,num_q,num_cls
        batch_bbox_preds: Tensor,  # bs,num_q,10
        batch_gt_instances_3d: InstanceList
    ) -> Tuple[Tensor, Tensor]:
        """"Loss function for outputs from a single decoder layer of a single
        feature level.

        Args:
           batch_cls_scores (Tensor): Box score logits from a single
                decoder layer for batched images with shape [num_query,
                cls_out_channels].
            batch_bbox_preds (Tensor): Sigmoid outputs from a single
                decoder layer for batched images, with normalized coordinate
                (cx,cy,l,w,cz,h,sin(φ),cos(φ),v_x,v_y) and
                shape [num_query, 10]
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instance_3d. It usually has ``bboxes_3d``,``labels_3d``.
        Returns:
            tulple(Tensor, Tensor): cls and reg loss for outputs from
                a single decoder layer.
        """
        batch_size = batch_cls_scores.size(0)  # batch size
        cls_scores_list = [batch_cls_scores[i] for i in range(batch_size)]
        bbox_preds_list = [batch_bbox_preds[i] for i in range(batch_size)]
        cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list,
                                           batch_gt_instances_3d)

        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_pos, num_total_neg) = cls_reg_targets
        labels = torch.cat(labels_list, 0)
        label_weights = torch.cat(label_weights_list, 0)
        bbox_targets = torch.cat(bbox_targets_list, 0)
        bbox_weights = torch.cat(bbox_weights_list, 0)

        # classification loss
        batch_cls_scores = batch_cls_scores.reshape(-1, self.cls_out_channels)
        # construct weighted avg_factor to match with the official DETR repo
        cls_avg_factor = num_total_pos * 1.0 + \
            num_total_neg * self.bg_cls_weight
        if self.sync_cls_avg_factor:
            cls_avg_factor = reduce_mean(
                batch_cls_scores.new_tensor([cls_avg_factor]))

        cls_avg_factor = max(cls_avg_factor, 1)
        loss_cls = self.loss_cls(
            batch_cls_scores, labels, label_weights, avg_factor=cls_avg_factor)

        # Compute the average number of gt boxes across all gpus, for
        # normalization purposes
        num_total_pos = loss_cls.new_tensor([num_total_pos])
        num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()

        # regression L1 loss
        batch_bbox_preds = batch_bbox_preds.reshape(-1,
                                                    batch_bbox_preds.size(-1))
        normalized_bbox_targets = normalize_bbox(bbox_targets, self.pc_range)
        # neg_query is all 0, log(0) is NaN
        isnotnan = torch.isfinite(normalized_bbox_targets).all(dim=-1)
        bbox_weights = bbox_weights * self.code_weights

        loss_bbox = self.loss_bbox(
            batch_bbox_preds[isnotnan, :self.code_size],
            normalized_bbox_targets[isnotnan, :self.code_size],
            bbox_weights[isnotnan, :self.code_size],
            avg_factor=num_total_pos)

        loss_cls = torch.nan_to_num(loss_cls)
        loss_bbox = torch.nan_to_num(loss_bbox)
        return loss_cls, loss_bbox

    # original loss()
    def loss_by_feat(
            self,
            batch_gt_instances_3d: InstanceList,
            preds_dicts: Dict[str, Tensor],
            batch_gt_instances_3d_ignore: OptInstanceList = None) -> Dict:
        """Compute loss of the head.

        Args:
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instance_3d.  It usually includes ``bboxes_3d``、`
                `labels_3d``、``depths``、``centers_2d`` and attributes.
                gt_instance.  It usually includes ``bboxes``、``labels``.
            batch_gt_instances_3d_ignore (list[:obj:`InstanceData`], Optional):
                NOT supported.
                Defaults to None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert batch_gt_instances_3d_ignore is None, \
            f'{self.__class__.__name__} only supports ' \
            f'for batch_gt_instances_3d_ignore setting to None.'
        all_cls_scores = preds_dicts[
            'all_cls_scores']  # num_dec,bs,num_q,num_cls
        all_bbox_preds = preds_dicts['all_bbox_preds']  # num_dec,bs,num_q,10
        enc_cls_scores = preds_dicts['enc_cls_scores']
        enc_bbox_preds = preds_dicts['enc_bbox_preds']

        # calculate loss for each decoder layer
        num_dec_layers = len(all_cls_scores)
        batch_gt_instances_3d_list = [
            batch_gt_instances_3d for _ in range(num_dec_layers)
        ]
        losses_cls, losses_bbox = multi_apply(self.loss_by_feat_single,
                                              all_cls_scores, all_bbox_preds,
                                              batch_gt_instances_3d_list)

        loss_dict = dict()
        # loss of proposal generated from encode feature map.
        if enc_cls_scores is not None:
            enc_loss_cls, enc_losses_bbox = self.loss_by_feat_single(
                enc_cls_scores, enc_bbox_preds, batch_gt_instances_3d_list)
            loss_dict['enc_loss_cls'] = enc_loss_cls
            loss_dict['enc_loss_bbox'] = enc_losses_bbox

        # loss from the last decoder layer
        loss_dict['loss_cls'] = losses_cls[-1]
        loss_dict['loss_bbox'] = losses_bbox[-1]

        # loss from other decoder layers
        num_dec_layer = 0
        for loss_cls_i, loss_bbox_i in zip(losses_cls[:-1], losses_bbox[:-1]):
            loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
            loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i
            num_dec_layer += 1
        return loss_dict

    def predict_by_feat(self,
                        preds_dicts,
                        img_metas,
                        rescale=False) -> InstanceList:
        """Transform network output for a batch into bbox predictions.

        Args:
            preds_dicts (Dict[str, Tensor]):
                -all_cls_scores (Tensor): Outputs from the classification head,
                    shape [nb_dec, bs, num_query, cls_out_channels]. Note
                    cls_out_channels should includes background.
                -all_bbox_preds (Tensor): Sigmoid outputs from the regression
                    head with normalized coordinate format
                    (cx, cy, l, w, cz, h, rot_sine, rot_cosine, v_x, v_y).
                    Shape [nb_dec, bs, num_query, 10].
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Object detection results of each image
            after the post process. Each item usually contains following keys.

                - scores_3d (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels_3d (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes_3d (Tensor): Contains a tensor with shape
                  (num_instances, C), where C >= 7.
        """
        # sinθ & cosθ ---> θ
        preds_dicts = self.bbox_coder.decode(preds_dicts)
        num_samples = len(preds_dicts)  # batch size
        ret_list = []
        for i in range(num_samples):
            results = InstanceData()
            preds = preds_dicts[i]
            bboxes = preds['bboxes']
            bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 5] * 0.5
            bboxes = img_metas[i]['box_type_3d'](bboxes, self.code_size - 1)

            results.bboxes_3d = bboxes
            results.scores_3d = preds['scores']
            results.labels_3d = preds['labels']
            ret_list.append(results)
        return ret_list