File size: 19,586 Bytes
34d1f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import copy
from typing import Dict, List, Tuple
import torch
import torch.nn as nn
from mmcv.cnn import Linear
from mmdet.models.dense_heads import DETRHead
from mmdet.models.layers import inverse_sigmoid
from mmdet.models.utils import multi_apply
from mmdet.utils import InstanceList, OptInstanceList, reduce_mean
from mmengine.model import bias_init_with_prob
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet3d.registry import MODELS, TASK_UTILS
from .util import normalize_bbox
@MODELS.register_module()
class DETR3DHead(DETRHead):
"""Head of DETR3D.
Args:
with_box_refine (bool): Whether to refine the reference points
in the decoder. Defaults to False.
as_two_stage (bool) : Whether to generate the proposal from
the outputs of encoder.
transformer (obj:`ConfigDict`): ConfigDict is used for building
the Encoder and Decoder.
bbox_coder (obj:`ConfigDict`): Configs to build the bbox coder
num_cls_fcs (int) : the number of layers in cls and reg branch
code_weights (List[double]) : loss weights of
(cx,cy,l,w,cz,h,sin(φ),cos(φ),v_x,v_y)
code_size (int) : size of code_weights
"""
def __init__(
self,
*args,
with_box_refine=False,
as_two_stage=False,
transformer=None,
bbox_coder=None,
num_cls_fcs=2,
code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2],
code_size=10,
**kwargs):
self.with_box_refine = with_box_refine
self.as_two_stage = as_two_stage
if self.as_two_stage:
transformer['as_two_stage'] = self.as_two_stage
self.code_size = code_size
self.code_weights = code_weights
self.bbox_coder = TASK_UTILS.build(bbox_coder)
self.pc_range = self.bbox_coder.pc_range
self.num_cls_fcs = num_cls_fcs - 1
super(DETR3DHead, self).__init__(
*args, transformer=transformer, **kwargs)
# DETR sampling=False, so use PseudoSampler, format the result
sampler_cfg = dict(type='PseudoSampler')
self.sampler = TASK_UTILS.build(sampler_cfg)
self.code_weights = nn.Parameter(
torch.tensor(self.code_weights, requires_grad=False),
requires_grad=False)
# forward_train -> loss
def _init_layers(self):
"""Initialize classification branch and regression branch of head."""
cls_branch = []
for _ in range(self.num_reg_fcs):
cls_branch.append(Linear(self.embed_dims, self.embed_dims))
cls_branch.append(nn.LayerNorm(self.embed_dims))
cls_branch.append(nn.ReLU(inplace=True))
cls_branch.append(Linear(self.embed_dims, self.cls_out_channels))
fc_cls = nn.Sequential(*cls_branch)
reg_branch = []
for _ in range(self.num_reg_fcs):
reg_branch.append(Linear(self.embed_dims, self.embed_dims))
reg_branch.append(nn.ReLU())
reg_branch.append(Linear(self.embed_dims, self.code_size))
reg_branch = nn.Sequential(*reg_branch)
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
# last reg_branch is used to generate proposal from
# encode feature map when as_two_stage is True.
num_pred = (self.transformer.decoder.num_layers + 1) if \
self.as_two_stage else self.transformer.decoder.num_layers
if self.with_box_refine:
self.cls_branches = _get_clones(fc_cls, num_pred)
self.reg_branches = _get_clones(reg_branch, num_pred)
else:
self.cls_branches = nn.ModuleList(
[fc_cls for _ in range(num_pred)])
self.reg_branches = nn.ModuleList(
[reg_branch for _ in range(num_pred)])
if not self.as_two_stage:
self.query_embedding = nn.Embedding(self.num_query,
self.embed_dims * 2)
def init_weights(self):
"""Initialize weights of the DeformDETR head."""
self.transformer.init_weights()
if self.loss_cls.use_sigmoid:
bias_init = bias_init_with_prob(0.01)
for m in self.cls_branches:
nn.init.constant_(m[-1].bias, bias_init)
def forward(self, mlvl_feats: List[Tensor], img_metas: List[Dict],
**kwargs) -> Dict[str, Tensor]:
"""Forward function.
Args:
mlvl_feats (List[Tensor]): Features from the upstream
network, each is a 5D-tensor with shape
(B, N, C, H, W).
Returns:
all_cls_scores (Tensor): Outputs from the classification head,
shape [nb_dec, bs, num_query, cls_out_channels]. Note
cls_out_channels should includes background.
all_bbox_preds (Tensor): Sigmoid outputs from the regression
head with normalized coordinate format
(cx, cy, l, w, cz, h, sin(φ), cos(φ), vx, vy).
Shape [nb_dec, bs, num_query, 10].
"""
query_embeds = self.query_embedding.weight
hs, init_reference, inter_references = self.transformer(
mlvl_feats,
query_embeds,
reg_branches=self.reg_branches if self.with_box_refine else None,
img_metas=img_metas,
**kwargs)
hs = hs.permute(0, 2, 1, 3)
outputs_classes = []
outputs_coords = []
for lvl in range(hs.shape[0]):
if lvl == 0:
reference = init_reference
else:
reference = inter_references[lvl - 1]
reference = inverse_sigmoid(reference)
outputs_class = self.cls_branches[lvl](hs[lvl])
tmp = self.reg_branches[lvl](hs[lvl]) # shape: ([B, num_q, 10])
# TODO: check the shape of reference
assert reference.shape[-1] == 3
tmp[..., 0:2] += reference[..., 0:2]
tmp[..., 0:2] = tmp[..., 0:2].sigmoid()
tmp[..., 4:5] += reference[..., 2:3]
tmp[..., 4:5] = tmp[..., 4:5].sigmoid()
tmp[..., 0:1] = \
tmp[..., 0:1] * (self.pc_range[3] - self.pc_range[0]) \
+ self.pc_range[0]
tmp[..., 1:2] = \
tmp[..., 1:2] * (self.pc_range[4] - self.pc_range[1]) \
+ self.pc_range[1]
tmp[..., 4:5] = \
tmp[..., 4:5] * (self.pc_range[5] - self.pc_range[2]) \
+ self.pc_range[2]
# TODO: check if using sigmoid
outputs_coord = tmp
outputs_classes.append(outputs_class)
outputs_coords.append(outputs_coord)
outputs_classes = torch.stack(outputs_classes)
outputs_coords = torch.stack(outputs_coords)
outs = {
'all_cls_scores': outputs_classes,
'all_bbox_preds': outputs_coords,
'enc_cls_scores': None,
'enc_bbox_preds': None,
}
return outs
def _get_target_single(
self,
cls_score: Tensor, # [query, num_cls]
bbox_pred: Tensor, # [query, 10]
gt_instances_3d: InstanceList) -> Tuple[Tensor, ...]:
"""Compute regression and classification targets for a single image."""
# turn bottm center into gravity center
gt_bboxes = gt_instances_3d.bboxes_3d # [num_gt, 9]
gt_bboxes = torch.cat(
(gt_bboxes.gravity_center, gt_bboxes.tensor[:, 3:]), dim=1)
gt_labels = gt_instances_3d.labels_3d # [num_gt, num_cls]
# assigner and sampler: PseudoSampler
assign_result = self.assigner.assign(
bbox_pred, cls_score, gt_bboxes, gt_labels, gt_bboxes_ignore=None)
sampling_result = self.sampler.sample(
assign_result, InstanceData(priors=bbox_pred),
InstanceData(bboxes_3d=gt_bboxes))
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
# label targets
num_bboxes = bbox_pred.size(0)
labels = gt_bboxes.new_full((num_bboxes, ),
self.num_classes,
dtype=torch.long)
labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds]
label_weights = gt_bboxes.new_ones(num_bboxes)
# bbox targets
# theta in gt_bbox here is still a single scalar
bbox_targets = torch.zeros_like(bbox_pred)[..., :self.code_size - 1]
bbox_weights = torch.zeros_like(bbox_pred)
# only matched query will learn from bbox coord
bbox_weights[pos_inds] = 1.0
# fix empty gt bug in multi gpu training
if sampling_result.pos_gt_bboxes.shape[0] == 0:
sampling_result.pos_gt_bboxes = \
sampling_result.pos_gt_bboxes.reshape(0, self.code_size - 1)
bbox_targets[pos_inds] = sampling_result.pos_gt_bboxes
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
neg_inds)
def get_targets(
self,
batch_cls_scores: List[Tensor], # bs[num_q,num_cls]
batch_bbox_preds: List[Tensor], # bs[num_q,10]
batch_gt_instances_3d: InstanceList) -> tuple():
""""Compute regression and classification targets for a batch image for
a single decoder layer.
Args:
batch_cls_scores (list[Tensor]): Box score logits from a single
decoder layer for each image with shape [num_query,
cls_out_channels].
batch_bbox_preds (list[Tensor]): Sigmoid outputs from a single
decoder layer for each image, with normalized coordinate
(cx,cy,l,w,cz,h,sin(φ),cos(φ),v_x,v_y) and
shape [num_query, 10]
batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes_3d``、``labels_3d``.
Returns:
tuple: a tuple containing the following targets.
- labels_list (list[Tensor]): Labels for all images.
- label_weights_list (list[Tensor]): Label weights for all \
images.
- bbox_targets_list (list[Tensor]): BBox targets for all \
images.
- bbox_weights_list (list[Tensor]): BBox weights for all \
images.
- num_total_pos (int): Number of positive samples in all \
images.
- num_total_neg (int): Number of negative samples in all \
images.
"""
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
pos_inds_list, neg_inds_list) = multi_apply(self._get_target_single,
batch_cls_scores,
batch_bbox_preds,
batch_gt_instances_3d)
num_total_pos = sum((inds.numel() for inds in pos_inds_list))
num_total_neg = sum((inds.numel() for inds in neg_inds_list))
return (labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, num_total_pos, num_total_neg)
def loss_by_feat_single(
self,
batch_cls_scores: Tensor, # bs,num_q,num_cls
batch_bbox_preds: Tensor, # bs,num_q,10
batch_gt_instances_3d: InstanceList
) -> Tuple[Tensor, Tensor]:
""""Loss function for outputs from a single decoder layer of a single
feature level.
Args:
batch_cls_scores (Tensor): Box score logits from a single
decoder layer for batched images with shape [num_query,
cls_out_channels].
batch_bbox_preds (Tensor): Sigmoid outputs from a single
decoder layer for batched images, with normalized coordinate
(cx,cy,l,w,cz,h,sin(φ),cos(φ),v_x,v_y) and
shape [num_query, 10]
batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
gt_instance_3d. It usually has ``bboxes_3d``,``labels_3d``.
Returns:
tulple(Tensor, Tensor): cls and reg loss for outputs from
a single decoder layer.
"""
batch_size = batch_cls_scores.size(0) # batch size
cls_scores_list = [batch_cls_scores[i] for i in range(batch_size)]
bbox_preds_list = [batch_bbox_preds[i] for i in range(batch_size)]
cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list,
batch_gt_instances_3d)
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
num_total_pos, num_total_neg) = cls_reg_targets
labels = torch.cat(labels_list, 0)
label_weights = torch.cat(label_weights_list, 0)
bbox_targets = torch.cat(bbox_targets_list, 0)
bbox_weights = torch.cat(bbox_weights_list, 0)
# classification loss
batch_cls_scores = batch_cls_scores.reshape(-1, self.cls_out_channels)
# construct weighted avg_factor to match with the official DETR repo
cls_avg_factor = num_total_pos * 1.0 + \
num_total_neg * self.bg_cls_weight
if self.sync_cls_avg_factor:
cls_avg_factor = reduce_mean(
batch_cls_scores.new_tensor([cls_avg_factor]))
cls_avg_factor = max(cls_avg_factor, 1)
loss_cls = self.loss_cls(
batch_cls_scores, labels, label_weights, avg_factor=cls_avg_factor)
# Compute the average number of gt boxes across all gpus, for
# normalization purposes
num_total_pos = loss_cls.new_tensor([num_total_pos])
num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()
# regression L1 loss
batch_bbox_preds = batch_bbox_preds.reshape(-1,
batch_bbox_preds.size(-1))
normalized_bbox_targets = normalize_bbox(bbox_targets, self.pc_range)
# neg_query is all 0, log(0) is NaN
isnotnan = torch.isfinite(normalized_bbox_targets).all(dim=-1)
bbox_weights = bbox_weights * self.code_weights
loss_bbox = self.loss_bbox(
batch_bbox_preds[isnotnan, :self.code_size],
normalized_bbox_targets[isnotnan, :self.code_size],
bbox_weights[isnotnan, :self.code_size],
avg_factor=num_total_pos)
loss_cls = torch.nan_to_num(loss_cls)
loss_bbox = torch.nan_to_num(loss_bbox)
return loss_cls, loss_bbox
# original loss()
def loss_by_feat(
self,
batch_gt_instances_3d: InstanceList,
preds_dicts: Dict[str, Tensor],
batch_gt_instances_3d_ignore: OptInstanceList = None) -> Dict:
"""Compute loss of the head.
Args:
batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
gt_instance_3d. It usually includes ``bboxes_3d``、`
`labels_3d``、``depths``、``centers_2d`` and attributes.
gt_instance. It usually includes ``bboxes``、``labels``.
batch_gt_instances_3d_ignore (list[:obj:`InstanceData`], Optional):
NOT supported.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert batch_gt_instances_3d_ignore is None, \
f'{self.__class__.__name__} only supports ' \
f'for batch_gt_instances_3d_ignore setting to None.'
all_cls_scores = preds_dicts[
'all_cls_scores'] # num_dec,bs,num_q,num_cls
all_bbox_preds = preds_dicts['all_bbox_preds'] # num_dec,bs,num_q,10
enc_cls_scores = preds_dicts['enc_cls_scores']
enc_bbox_preds = preds_dicts['enc_bbox_preds']
# calculate loss for each decoder layer
num_dec_layers = len(all_cls_scores)
batch_gt_instances_3d_list = [
batch_gt_instances_3d for _ in range(num_dec_layers)
]
losses_cls, losses_bbox = multi_apply(self.loss_by_feat_single,
all_cls_scores, all_bbox_preds,
batch_gt_instances_3d_list)
loss_dict = dict()
# loss of proposal generated from encode feature map.
if enc_cls_scores is not None:
enc_loss_cls, enc_losses_bbox = self.loss_by_feat_single(
enc_cls_scores, enc_bbox_preds, batch_gt_instances_3d_list)
loss_dict['enc_loss_cls'] = enc_loss_cls
loss_dict['enc_loss_bbox'] = enc_losses_bbox
# loss from the last decoder layer
loss_dict['loss_cls'] = losses_cls[-1]
loss_dict['loss_bbox'] = losses_bbox[-1]
# loss from other decoder layers
num_dec_layer = 0
for loss_cls_i, loss_bbox_i in zip(losses_cls[:-1], losses_bbox[:-1]):
loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i
num_dec_layer += 1
return loss_dict
def predict_by_feat(self,
preds_dicts,
img_metas,
rescale=False) -> InstanceList:
"""Transform network output for a batch into bbox predictions.
Args:
preds_dicts (Dict[str, Tensor]):
-all_cls_scores (Tensor): Outputs from the classification head,
shape [nb_dec, bs, num_query, cls_out_channels]. Note
cls_out_channels should includes background.
-all_bbox_preds (Tensor): Sigmoid outputs from the regression
head with normalized coordinate format
(cx, cy, l, w, cz, h, rot_sine, rot_cosine, v_x, v_y).
Shape [nb_dec, bs, num_query, 10].
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
Returns:
list[:obj:`InstanceData`]: Object detection results of each image
after the post process. Each item usually contains following keys.
- scores_3d (Tensor): Classification scores, has a shape
(num_instance, )
- labels_3d (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes_3d (Tensor): Contains a tensor with shape
(num_instances, C), where C >= 7.
"""
# sinθ & cosθ ---> θ
preds_dicts = self.bbox_coder.decode(preds_dicts)
num_samples = len(preds_dicts) # batch size
ret_list = []
for i in range(num_samples):
results = InstanceData()
preds = preds_dicts[i]
bboxes = preds['bboxes']
bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 5] * 0.5
bboxes = img_metas[i]['box_type_3d'](bboxes, self.code_size - 1)
results.bboxes_3d = bboxes
results.scores_3d = preds['scores']
results.labels_3d = preds['labels']
ret_list.append(results)
return ret_list
|