|
_base_ = [ |
|
'../_base_/models/3dssd.py', '../_base_/datasets/kitti-3d-car.py', |
|
'../_base_/default_runtime.py' |
|
] |
|
|
|
|
|
dataset_type = 'KittiDataset' |
|
data_root = 'data/kitti/' |
|
class_names = ['Car'] |
|
point_cloud_range = [0, -40, -5, 70, 40, 3] |
|
input_modality = dict(use_lidar=True, use_camera=False) |
|
backend_args = None |
|
|
|
db_sampler = dict( |
|
data_root=data_root, |
|
info_path=data_root + 'kitti_dbinfos_train.pkl', |
|
rate=1.0, |
|
prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)), |
|
classes=class_names, |
|
sample_groups=dict(Car=15), |
|
points_loader=dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=4, |
|
use_dim=4, |
|
backend_args=backend_args), |
|
backend_args=backend_args) |
|
|
|
train_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=4, |
|
use_dim=4, |
|
backend_args=backend_args), |
|
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), |
|
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='ObjectSample', db_sampler=db_sampler), |
|
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), |
|
dict( |
|
type='ObjectNoise', |
|
num_try=100, |
|
translation_std=[1.0, 1.0, 0], |
|
global_rot_range=[0.0, 0.0], |
|
rot_range=[-1.0471975511965976, 1.0471975511965976]), |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[-0.78539816, 0.78539816], |
|
scale_ratio_range=[0.9, 1.1]), |
|
|
|
|
|
dict(type='PointSample', num_points=16384), |
|
dict( |
|
type='Pack3DDetInputs', |
|
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) |
|
] |
|
|
|
test_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=4, |
|
use_dim=4, |
|
backend_args=backend_args), |
|
dict( |
|
type='MultiScaleFlipAug3D', |
|
img_scale=(1333, 800), |
|
pts_scale_ratio=1, |
|
flip=False, |
|
transforms=[ |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[0, 0], |
|
scale_ratio_range=[1., 1.], |
|
translation_std=[0, 0, 0]), |
|
dict(type='RandomFlip3D'), |
|
dict( |
|
type='PointsRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='PointSample', num_points=16384), |
|
]), |
|
dict(type='Pack3DDetInputs', keys=['points']) |
|
] |
|
|
|
train_dataloader = dict( |
|
batch_size=4, dataset=dict(dataset=dict(pipeline=train_pipeline, ))) |
|
test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) |
|
val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) |
|
|
|
|
|
model = dict( |
|
bbox_head=dict( |
|
num_classes=1, |
|
bbox_coder=dict( |
|
type='AnchorFreeBBoxCoder', num_dir_bins=12, with_rot=True))) |
|
|
|
|
|
lr = 0.002 |
|
optim_wrapper = dict( |
|
type='OptimWrapper', |
|
optimizer=dict(type='AdamW', lr=lr, weight_decay=0.), |
|
clip_grad=dict(max_norm=35, norm_type=2), |
|
) |
|
|
|
|
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=80, val_interval=2) |
|
val_cfg = dict(type='ValLoop') |
|
test_cfg = dict(type='TestLoop') |
|
|
|
|
|
param_scheduler = [ |
|
dict( |
|
type='MultiStepLR', |
|
begin=0, |
|
end=80, |
|
by_epoch=True, |
|
milestones=[45, 60], |
|
gamma=0.1) |
|
] |
|
|