|
_base_ = ['./multiview-dfm_r101-dcn_16xb2_waymoD5-3d-3class.py'] |
|
|
|
model = dict( |
|
bbox_head=dict( |
|
_delete_=True, |
|
type='CenterHead', |
|
in_channels=256, |
|
tasks=[ |
|
dict(num_class=1, class_names=['Pedestrian']), |
|
dict(num_class=1, class_names=['Cyclist']), |
|
dict(num_class=1, class_names=['Car']), |
|
], |
|
common_heads=dict(reg=(2, 2), height=(1, 2), dim=(3, 2), rot=(2, 2)), |
|
share_conv_channel=64, |
|
bbox_coder=dict( |
|
type='CenterPointBBoxCoder', |
|
post_center_range=[-35.0, -75.0, -2, 75.0, 75.0, 4], |
|
pc_range=[-35.0, -75.0, -2, 75.0, 75.0, 4], |
|
max_num=2000, |
|
score_threshold=0, |
|
out_size_factor=1, |
|
voxel_size=(.50, .50), |
|
code_size=7), |
|
separate_head=dict( |
|
type='SeparateHead', init_bias=-2.19, final_kernel=3), |
|
loss_cls=dict(type='mmdet.GaussianFocalLoss', reduction='mean'), |
|
loss_bbox=dict( |
|
type='mmdet.L1Loss', reduction='mean', loss_weight=0.25), |
|
norm_bbox=True), |
|
train_cfg=dict( |
|
_delete_=True, |
|
grid_size=[220, 300, 1], |
|
voxel_size=(0.5, 0.5, 6), |
|
out_size_factor=1, |
|
dense_reg=1, |
|
gaussian_overlap=0.1, |
|
max_objs=500, |
|
min_radius=2, |
|
code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], |
|
point_cloud_range=[-35.0, -75.0, -2, 75.0, 75.0, 4]), |
|
test_cfg=dict( |
|
_delete_=True, |
|
post_center_limit_range=[-35.0, -75.0, -2, 75.0, 75.0, 4], |
|
max_per_img=4096, |
|
max_pool_nms=False, |
|
min_radius=[0.5, 2, 6], |
|
score_threshold=0, |
|
out_size_factor=1, |
|
voxel_size=(0.5, 0.5), |
|
nms_type='circle', |
|
pre_max_size=2000, |
|
post_max_size=200, |
|
nms_thr=0.2)) |
|
|