|
_base_ = ['./detr3d_r101_gridmask.py'] |
|
|
|
custom_imports = dict(imports=['projects.DETR3D.detr3d']) |
|
|
|
|
|
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] |
|
voxel_size = [0.2, 0.2, 8] |
|
|
|
img_norm_cfg = dict( |
|
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False) |
|
|
|
class_names = [ |
|
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', |
|
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' |
|
] |
|
|
|
input_modality = dict( |
|
use_lidar=False, |
|
use_camera=True, |
|
use_radar=False, |
|
use_map=False, |
|
use_external=False) |
|
|
|
dataset_type = 'NuScenesDataset' |
|
data_root = 'data/nuscenes/' |
|
|
|
test_transforms = [ |
|
dict( |
|
type='RandomResize3D', |
|
scale=(1600, 900), |
|
ratio_range=(1., 1.), |
|
keep_ratio=True) |
|
] |
|
train_transforms = [dict(type='PhotoMetricDistortion3D')] + test_transforms |
|
|
|
train_pipeline = [ |
|
dict(type='LoadMultiViewImageFromFiles', to_float32=True, num_views=6), |
|
dict( |
|
type='LoadAnnotations3D', |
|
with_bbox_3d=True, |
|
with_label_3d=True, |
|
with_attr_label=False), |
|
dict(type='MultiViewWrapper', transforms=train_transforms), |
|
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='ObjectNameFilter', classes=class_names), |
|
dict(type='Pack3DDetInputs', keys=['img', 'gt_bboxes_3d', 'gt_labels_3d']) |
|
] |
|
|
|
metainfo = dict(classes=class_names) |
|
data_prefix = dict( |
|
pts='', |
|
CAM_FRONT='samples/CAM_FRONT', |
|
CAM_FRONT_LEFT='samples/CAM_FRONT_LEFT', |
|
CAM_FRONT_RIGHT='samples/CAM_FRONT_RIGHT', |
|
CAM_BACK='samples/CAM_BACK', |
|
CAM_BACK_RIGHT='samples/CAM_BACK_RIGHT', |
|
CAM_BACK_LEFT='samples/CAM_BACK_LEFT') |
|
|
|
train_dataloader = dict( |
|
_delete_=True, |
|
batch_size=1, |
|
num_workers=4, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
dataset=dict( |
|
type='CBGSDataset', |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='nuscenes_infos_train.pkl', |
|
pipeline=train_pipeline, |
|
load_type='frame_based', |
|
metainfo=metainfo, |
|
modality=input_modality, |
|
test_mode=False, |
|
data_prefix=data_prefix, |
|
|
|
|
|
box_type_3d='LiDAR'))) |
|
|