mm3dtest / projects /DETR3D /configs /detr3d_r101_gridmask_cbgs.py
giantmonkeyTC
2344
34d1f8b
_base_ = ['./detr3d_r101_gridmask.py']
custom_imports = dict(imports=['projects.DETR3D.detr3d'])
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
voxel_size = [0.2, 0.2, 8]
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False)
# For nuScenes we usually do 10-class detection
class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]
input_modality = dict(
use_lidar=False,
use_camera=True,
use_radar=False,
use_map=False,
use_external=False)
dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/'
test_transforms = [
dict(
type='RandomResize3D',
scale=(1600, 900),
ratio_range=(1., 1.),
keep_ratio=True)
]
train_transforms = [dict(type='PhotoMetricDistortion3D')] + test_transforms
train_pipeline = [
dict(type='LoadMultiViewImageFromFiles', to_float32=True, num_views=6),
dict(
type='LoadAnnotations3D',
with_bbox_3d=True,
with_label_3d=True,
with_attr_label=False),
dict(type='MultiViewWrapper', transforms=train_transforms),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='Pack3DDetInputs', keys=['img', 'gt_bboxes_3d', 'gt_labels_3d'])
]
metainfo = dict(classes=class_names)
data_prefix = dict(
pts='',
CAM_FRONT='samples/CAM_FRONT',
CAM_FRONT_LEFT='samples/CAM_FRONT_LEFT',
CAM_FRONT_RIGHT='samples/CAM_FRONT_RIGHT',
CAM_BACK='samples/CAM_BACK',
CAM_BACK_RIGHT='samples/CAM_BACK_RIGHT',
CAM_BACK_LEFT='samples/CAM_BACK_LEFT')
train_dataloader = dict(
_delete_=True,
batch_size=1,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='CBGSDataset',
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='nuscenes_infos_train.pkl',
pipeline=train_pipeline,
load_type='frame_based',
metainfo=metainfo,
modality=input_modality,
test_mode=False,
data_prefix=data_prefix,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='LiDAR')))