File size: 2,678 Bytes
251434f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
library_name: transformers
base_model: gokulsrinivasagan/bert_tiny_lda_5_v1
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: bert_tiny_lda_5_v1_mrpc
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_tiny_lda_5_v1_mrpc

This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_5_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_5_v1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6257
- Accuracy: 0.6838
- F1: 0.8122
- Combined Score: 0.7480

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| 0.7698        | 1.0   | 15   | 0.6248          | 0.6838   | 0.8122 | 0.7480         |
| 0.6393        | 2.0   | 30   | 0.6289          | 0.6838   | 0.8122 | 0.7480         |
| 0.6303        | 3.0   | 45   | 0.6289          | 0.6838   | 0.8122 | 0.7480         |
| 0.6358        | 4.0   | 60   | 0.6250          | 0.6838   | 0.8122 | 0.7480         |
| 0.6315        | 5.0   | 75   | 0.6246          | 0.6838   | 0.8122 | 0.7480         |
| 0.6341        | 6.0   | 90   | 0.6247          | 0.6838   | 0.8122 | 0.7480         |
| 0.6305        | 7.0   | 105  | 0.6256          | 0.6838   | 0.8122 | 0.7480         |
| 0.6333        | 8.0   | 120  | 0.6240          | 0.6838   | 0.8122 | 0.7480         |
| 0.6276        | 9.0   | 135  | 0.6283          | 0.6838   | 0.8122 | 0.7480         |
| 0.6359        | 10.0  | 150  | 0.6273          | 0.6838   | 0.8122 | 0.7480         |
| 0.6349        | 11.0  | 165  | 0.6254          | 0.6838   | 0.8122 | 0.7480         |
| 0.6336        | 12.0  | 180  | 0.6243          | 0.6838   | 0.8122 | 0.7480         |
| 0.6305        | 13.0  | 195  | 0.6257          | 0.6838   | 0.8122 | 0.7480         |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3