File size: 2,404 Bytes
31982f5
 
b5c6a4b
 
31982f5
 
 
 
b5c6a4b
 
31982f5
 
 
 
b5c6a4b
 
 
 
 
 
 
 
 
 
 
 
31982f5
 
 
 
 
 
 
b5c6a4b
31982f5
b5c6a4b
 
31982f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: google/bert_uncased_L-4_H-256_A-4
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert_uncased_L-4_H-256_A-4_rte
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE RTE
      type: glue
      args: rte
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.631768953068592
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_uncased_L-4_H-256_A-4_rte

This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the GLUE RTE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6545
- Accuracy: 0.6318

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6982        | 1.0   | 10   | 0.6899          | 0.5451   |
| 0.6864        | 2.0   | 20   | 0.6845          | 0.5523   |
| 0.6733        | 3.0   | 30   | 0.6737          | 0.5884   |
| 0.6495        | 4.0   | 40   | 0.6554          | 0.5884   |
| 0.61          | 5.0   | 50   | 0.6573          | 0.6101   |
| 0.5697        | 6.0   | 60   | 0.6545          | 0.6318   |
| 0.5279        | 7.0   | 70   | 0.6648          | 0.6354   |
| 0.4859        | 8.0   | 80   | 0.6778          | 0.6173   |
| 0.4524        | 9.0   | 90   | 0.6933          | 0.6137   |
| 0.4126        | 10.0  | 100  | 0.6992          | 0.6245   |
| 0.386         | 11.0  | 110  | 0.7181          | 0.6426   |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3