alvarobartt's picture
alvarobartt HF staff
Update handler.py
56e1504 verified
from typing import Any, Dict, List
import requests
import torch
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image
class EndpointHandler:
def __init__(
self,
model_dir: str = "/opt/huggingface/model",
**kwargs: Any,
) -> None:
self.model = PaliGemmaForConditionalGeneration.from_pretrained(
"google/paligemma-3b-mix-448",
revision="bfloat16",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
device_map="auto",
).eval()
self.processor = AutoProcessor.from_pretrained("google/paligemma-3b-mix-448")
def __call__(self, data: Dict[str, Any]) -> Dict[str, List[Any]]:
if "instances" not in data:
raise ValueError(
"The request body must contain a key `instances` with a list of instances."
)
predictions = []
for input in data["instances"]:
if "prompt" in input:
input["text"] = input.pop("prompt")
if any(key not in input for key in {"text", "image_url"}):
raise ValueError(
"The request body for each instance should contain both the `text` and the `image_url` key with a valid image URL."
)
try:
image = Image.open(requests.get(input["image_url"], stream=True).raw) # type: ignore
except Exception as e:
raise ValueError(
f"The provided image URL ({input['image_url']}) cannot be downloaded (with exception {e}), make sure it's public and accessible."
)
inputs = self.processor(
text=input["text"], images=image, return_tensors="pt"
).to(self.model.device)
input_len = inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation_kwargs = data.get(
"generation_kwargs", {"max_new_tokens": 100, "do_sample": False}
)
generation = self.model.generate(**inputs, **generation_kwargs)
generation = generation[0][input_len:]
response = self.processor.decode(generation, skip_special_tokens=True)
predictions.append(response)
return {"predictions": predictions}