File size: 4,956 Bytes
50f9b84 51e875b 50f9b84 51e875b 50f9b84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
license: apache-2.0
---
# MetricX-24 (Large)
*This is not an officially supported Google product.*
> ℹ️ For the bfloat16 variant of this model, see [MetricX-24 (Large, bfloat16)](https://huggingface.co/google/metricx-24-hybrid-large-v2p6-bfloat16).
**GitHub repository**: https://github.com/google-research/metricx
The repository contains the code for running inference on MetricX-24 models,
a family of models for automatic evaluation of translations that were proposed
in the WMT'24 Metrics Shared Task submission
[MetricX-24: The Google Submission to the WMT 2024 Metrics Shared Task](https://aclanthology.org/2024.wmt-1.35/).
The models were trained in [T5X](https://github.com/google-research/t5x) and
then converted for use in PyTorch.
## Available Models
There are 3 MetricX-24 models available on Hugging Face that vary in the number
of parameters. Unlike the MetricX-23 models, the MetricX-24 models are all
hybrid models that can do both reference-based and reference-free (also known as
quality estimation, or QE) inference:
* [MetricX-24-Hybrid-XXL](https://huggingface.co/google/metricx-24-hybrid-xxl-v2p6)
* [MetricX-24-Hybrid-XL](https://huggingface.co/google/metricx-24-hybrid-xl-v2p6)
* [MetricX-24-Hybrid-Large](https://huggingface.co/google/metricx-24-hybrid-large-v2p6)
We recommend using the XXL model versions for the best agreement with human
judgments of translation quality, the Large versions for best speed, and the
XL for an intermediate use case.
## Changes to the WMT'24 Submission
The MetricX-24 models available here are most similar to the primary submission
to the WMT'24 Metrics Shared Task. They are initialized with
[mT5](https://aclanthology.org/2021.naacl-main.41/),
then fine-tuned on a combination of direct assessment and MQM data from
WMT'15-'22. However, we made a couple of small changes that make these models
different from the WMT'24 submissions.
First, the metric scores get automatically clipped at 0 and 25, to ensure they
are strictly in the [0, 25] range, as due to the nature of regression models,
the scores could otherwise sometimes fall outside the range.
Second, we included one additional type of synthetic training examples that
weren't ready in time for the official submission. These are examples of perfect
translations of multi-sentence segments, generated from the MQM data from
WMT'20-'22. The purpose of this category of synthetic data is to reduce the
model's bias against longer translations when the source segment and/or
reference are also long.
## Model Performance
For comparison with the submissions to
[WMT'24 Metrics Shared Task](https://www2.statmt.org/wmt24/pdf/2024.wmt-1.2.pdf),
we provide an overview of the system- and segment-level correlation scores
between the MetricX-24 scores and MQM ratings of translation quality, as
calculated on the shared task's test sets:
| Model | Sys-Level SPA (en-de) | Seg-Level Acc (en-de) | Sys-Level SPA (en-es) | Seg-Level Acc (en-es) | Sys-Level SPA (ja-zh) | Seg-Level Acc (ja-zh) |
| -------------------------- | ----- | ----- | ----- | ----- | ----- | ----- |
| MetricX-24-Hybrid-XXL | 0.865 | 0.543 | 0.785 | 0.685 | 0.878 | 0.541 |
| MetricX-24-Hybrid-XL | 0.884 | 0.522 | 0.806 | 0.683 | 0.859 | 0.528 |
| MetricX-24-Hybrid-Large | 0.879 | 0.511 | 0.795 | 0.686 | 0.845 | 0.514 |
| MetricX-24-Hybrid-QE-XXL | 0.884 | 0.525 | 0.789 | 0.685 | 0.863 | 0.527 |
| MetricX-24-Hybrid-QE-XL | 0.879 | 0.502 | 0.774 | 0.683 | 0.849 | 0.509 |
| MetricX-24-Hybrid-QE-Large | 0.809 | 0.490 | 0.762 | 0.684 | 0.847 | 0.508 |
Below are the above correlation scores averaged, as used in the shared task to
determine the final ranking of the submissions:
| Model | Average Correlation |
| -------------------------- | ----- |
| MetricX-24-Hybrid-XXL | 0.716 |
| MetricX-24-Hybrid-XL | 0.714 |
| MetricX-24-Hybrid-Large | 0.705 |
| MetricX-24-Hybrid-QE-XXL | 0.712 |
| MetricX-24-Hybrid-QE-XL | 0.699 |
| MetricX-24-Hybrid-QE-Large | 0.683 |
NOTE: Since MetricX-24 models are hybrid models, MetricX-24-\<size\> and
MetricX-24-QE-\<size\> correspond to the same model, evaluated *with* and
*without* the references, respectively.
## Citation
If you use MetricX-24 in your research, please cite the following publication:
```bibtex
@inproceedings{juraska-etal-2024-metricx,
title = "{M}etric{X}-24: The {G}oogle Submission to the {WMT} 2024 Metrics Shared Task",
author = "Juraska, Juraj and
Deutsch, Daniel and
Finkelstein, Mara and
Freitag, Markus",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Ninth Conference on Machine Translation",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.wmt-1.35",
pages = "492--504",
}
``` |