Update README.md
Browse files
README.md
CHANGED
@@ -68,19 +68,104 @@ processor.push_to_hub("USERNAME/MODEL_NAME")
|
|
68 |
|
69 |
## Running the model
|
70 |
|
71 |
-
|
72 |
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
|
|
76 |
|
77 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
|
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
# Contribution
|
86 |
|
|
|
68 |
|
69 |
## Running the model
|
70 |
|
71 |
+
### In full precision, on CPU:
|
72 |
|
73 |
+
You can run the model in full precision on CPU:
|
74 |
+
```python
|
75 |
+
import requests
|
76 |
+
from PIL import Image
|
77 |
+
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
78 |
+
|
79 |
+
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
80 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
81 |
+
|
82 |
+
model = Pix2StructForConditionalGeneration.from_pretrained("ybelkada/pix2struct-textcaps-base")
|
83 |
+
processor = Pix2StructProcessor.from_pretrained("ybelkada/pix2struct-textcaps-base")
|
84 |
+
|
85 |
+
# image only
|
86 |
+
inputs = processor(images=image, return_tensors="pt")
|
87 |
+
|
88 |
+
predictions = model.generate(**inputs)
|
89 |
+
print(processor.decode(predictions[0], skip_special_tokens=True))
|
90 |
+
>>> A stop sign is on a street corner.
|
91 |
+
```
|
92 |
+
|
93 |
+
### In full precision, on GPU:
|
94 |
+
|
95 |
+
You can run the model in full precision on CPU:
|
96 |
+
```python
|
97 |
+
import requests
|
98 |
+
from PIL import Image
|
99 |
+
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
100 |
+
|
101 |
+
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
102 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
103 |
|
104 |
+
model = Pix2StructForConditionalGeneration.from_pretrained("ybelkada/pix2struct-textcaps-base").to("cuda")
|
105 |
+
processor = Pix2StructProcessor.from_pretrained("ybelkada/pix2struct-textcaps-base")
|
106 |
|
107 |
+
# image only
|
108 |
+
inputs = processor(images=image, return_tensors="pt").to("cuda")
|
109 |
+
|
110 |
+
predictions = model.generate(**inputs)
|
111 |
+
print(processor.decode(predictions[0], skip_special_tokens=True))
|
112 |
+
>>> A stop sign is on a street corner.
|
113 |
+
```
|
114 |
|
115 |
+
### In half precision, on GPU:
|
116 |
+
|
117 |
+
You can run the model in full precision on CPU:
|
118 |
+
```python
|
119 |
+
import requests
|
120 |
+
import torch
|
121 |
+
|
122 |
+
from PIL import Image
|
123 |
+
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
124 |
|
125 |
+
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
126 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
127 |
|
128 |
+
model = Pix2StructForConditionalGeneration.from_pretrained("ybelkada/pix2struct-textcaps-base", torch_dtype=torch.bfloat16).to("cuda")
|
129 |
+
processor = Pix2StructProcessor.from_pretrained("ybelkada/pix2struct-textcaps-base")
|
130 |
+
|
131 |
+
# image only
|
132 |
+
inputs = processor(images=image, return_tensors="pt").to("cuda", torch.bfloat16)
|
133 |
+
|
134 |
+
predictions = model.generate(**inputs)
|
135 |
+
print(processor.decode(predictions[0], skip_special_tokens=True))
|
136 |
+
>>> A stop sign is on a street corner.
|
137 |
+
```
|
138 |
+
|
139 |
+
### Use different sequence length
|
140 |
+
|
141 |
+
This model has been trained on a sequence length of `2048`. You can try to reduce the sequence length for a more memory efficient inference but you may observe some performance degradation for small sequence length (<512). Just pass `max_patches` when calling the processor:
|
142 |
+
```python
|
143 |
+
inputs = processor(images=image, return_tensors="pt", max_patches=512)
|
144 |
+
```
|
145 |
+
|
146 |
+
### Conditional generation
|
147 |
+
|
148 |
+
You can also pre-pend some input text to perform conditional generation:
|
149 |
+
|
150 |
+
```python
|
151 |
+
import requests
|
152 |
+
from PIL import Image
|
153 |
+
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
154 |
+
|
155 |
+
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
156 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
157 |
+
text = "A picture of"
|
158 |
+
|
159 |
+
model = Pix2StructForConditionalGeneration.from_pretrained("ybelkada/pix2struct-textcaps-base")
|
160 |
+
processor = Pix2StructProcessor.from_pretrained("ybelkada/pix2struct-textcaps-base")
|
161 |
+
|
162 |
+
# image only
|
163 |
+
inputs = processor(images=image, text=text, return_tensors="pt")
|
164 |
+
|
165 |
+
predictions = model.generate(**inputs)
|
166 |
+
print(processor.decode(predictions[0], skip_special_tokens=True))
|
167 |
+
>>> A picture of a stop sign that says yes.
|
168 |
+
```
|
169 |
|
170 |
# Contribution
|
171 |
|