File size: 952 Bytes
08423b4
 
 
 
 
 
 
 
 
 
 
31e6f12
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
---
license: apache-2.0
datasets:
- tals/vitaminc
- SetFit/mnli
- snli
- fever
- paws
- scitail
language:
- en
---
This is an NLI model based on T5-XXL that predicts a binary label (1 - Entailment, 0 - No entailment).

It is trained similarly to the NLI model described in the [TRUE paper (Honovich et al, 2022)](https://arxiv.org/pdf/2204.04991.pdf), but using the following datasets instead of ANLI:
- SNLI ([Bowman et al., 2015](https://arxiv.org/abs/1508.05326))
- MNLI ([Williams et al., 2018](https://aclanthology.org/N18-1101.pdf))
- Fever ([Thorne et al., 2018](https://aclanthology.org/N18-1074.pdf))
- Scitail ([Khot et al., 2018](http://ai2-website.s3.amazonaws.com/publications/scitail-aaai-2018_cameraready.pdf))
- PAWS ([Zhang et al. 2019](https://arxiv.org/abs/1904.01130))
- VitaminC ([Schuster et al., 2021](https://arxiv.org/pdf/2103.08541.pdf))

The input format for the model is: "premise: PREMISE_TEXT hypothesis:HYPOTHESIS_TEXT".