File size: 2,634 Bytes
4f8bc7f 3ac2b03 67bcc4f 6b0e28f f36537f 67bcc4f 4f8bc7f 67bcc4f 98cf383 67bcc4f 1c9f364 67bcc4f 98cf383 67bcc4f 98cf383 67bcc4f 1c9f364 67bcc4f e3e7026 67bcc4f e3e7026 0fccc61 67bcc4f c90f060 67bcc4f 98cf383 67bcc4f f36537f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
---
license: cc-by-nc-4.0
datasets:
- asset
- wi_locness
- GEM/wiki_auto_asset_turk
- discofuse
- zaemyung/IteraTeR_plus
- jfleg
- grammarly/coedit
language:
- en
metrics:
- sari
- bleu
- accuracy
---
# Model Card for CoEdIT-xl-composite
This model was obtained by fine-tuning the corresponding `google/flan-t5-xl` model on the CoEdIT-Composite dataset. Details of the dataset can be found in our paper and repository.
**Paper:** CoEdIT: Text Editing by Task-Specific Instruction Tuning
**Authors:** Vipul Raheja, Dhruv Kumar, Ryan Koo, Dongyeop Kang
## Model Details
### Model Description
- **Language(s) (NLP)**: English
- **Finetuned from model:** google/flan-t5-xl
### Model Sources
- **Repository:** https://github.com/vipulraheja/coedit
- **Paper:** https://arxiv.org/abs/2305.09857
## How to use
We make available the models presented in our paper.
<table>
<tr>
<th>Model</th>
<th>Number of parameters</th>
</tr>
<tr>
<td>CoEdIT-large</td>
<td>770M</td>
</tr>
<tr>
<td>CoEdIT-xl</td>
<td>3B</td>
</tr>
<tr>
<td>CoEdIT-xxl</td>
<td>11B</td>
</tr>
</table>
## Uses
## Text Revision Task
Given an edit instruction and an original text, our model can generate the edited version of the text.<br>
![task_specs](https://huggingface.co/grammarly/coedit-xl/resolve/main/task_examples.png)
This model can also perform edits on composite instructions, as shown below:
![composite task_specs](https://huggingface.co/grammarly/coedit-xl-composite/resolve/main/composite_examples.png)
## Usage
```python
from transformers import AutoTokenizer, T5ForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("grammarly/coedit-xl-composite")
model = T5ForConditionalGeneration.from_pretrained("grammarly/coedit-xl-composite")
input_text = 'Fix grammatical errors in this sentence and make it simpler: When I grow up, I start to understand what he said is quite right.'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids, max_length=256)
edited_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
```
#### Software
https://github.com/vipulraheja/coedit
## Citation
**BibTeX:**
```
@article{raheja2023coedit,
title={CoEdIT: Text Editing by Task-Specific Instruction Tuning},
author={Vipul Raheja and Dhruv Kumar and Ryan Koo and Dongyeop Kang},
year={2023},
eprint={2305.09857},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
**APA:**
Raheja, V., Kumar, D., Koo, R., & Kang, D. (2023). CoEdIT: Text Editing by Task-Specific Instruction Tuning. ArXiv. /abs/2305.09857 |