File size: 3,509 Bytes
8964f08
 
 
 
 
6e2b018
f464d34
 
8964f08
 
f464d34
 
 
 
 
6e2b018
 
f464d34
6e2b018
f464d34
 
 
 
9de47c8
5a4fc46
 
 
 
5a190d3
 
5a4fc46
 
 
 
 
 
 
c91a92e
 
 
 
 
 
 
 
 
 
 
 
 
8964f08
 
 
 
 
 
 
6e2b018
8964f08
9de47c8
 
8964f08
9de47c8
d1817dc
9de47c8
8964f08
6e2b018
d13fd65
9de47c8
8964f08
 
 
9de47c8
8964f08
 
 
 
 
 
6e2b018
8964f08
 
 
 
 
6e2b018
8964f08
6e2b018
9de47c8
8964f08
 
f464d34
 
 
 
6e2b018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f464d34
 
8964f08
 
6e2b018
8964f08
6e2b018
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-1b-frisian
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_13_0
      type: common_voice_13_0
      config: fy-NL
      split: validation
      args: fy-NL
    metrics:
    - name: Wer
      type: wer
      value: 0.1492598825428444
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_8_0
      type: common_voice_8_0
      config: fy-NL
      split: test
      args: fy-NL
    metrics:
    - name: Wer
      type: wer
      value: 0.15356265356265356
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_13_0
      type: common_voice_13_0
      config: fy-NL
      split: test
      args: fy-NL
    metrics:
    - name: Wer
      type: wer
      value: 0.14712316399874995
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-1b-frisian

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2204
- Wer: 0.1493

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.9606        | 2.45  | 300  | 2.6184          | 1.0    |
| 1.4992        | 4.9   | 600  | 0.4233          | 0.4143 |
| 0.9757        | 7.35  | 900  | 0.2765          | 0.3021 |
| 0.8773        | 9.8   | 1200 | 0.2529          | 0.2528 |
| 0.7448        | 12.24 | 1500 | 0.2363          | 0.2258 |
| 0.7039        | 14.69 | 1800 | 0.2258          | 0.2103 |
| 0.6811        | 17.14 | 2100 | 0.2217          | 0.2074 |
| 0.6279        | 19.59 | 2400 | 0.2050          | 0.1915 |
| 0.5938        | 22.04 | 2700 | 0.2229          | 0.1922 |
| 0.6227        | 24.49 | 3000 | 0.2088          | 0.2019 |
| 0.5682        | 26.94 | 3300 | 0.2127          | 0.1874 |
| 0.5939        | 29.39 | 3600 | 0.2044          | 0.1789 |
| 0.5427        | 31.84 | 3900 | 0.2185          | 0.1791 |
| 0.5551        | 34.41 | 4200 | 0.2097          | 0.1644 |
| 0.5021        | 36.86 | 4500 | 0.2180          | 0.1678 |
| 0.4589        | 39.31 | 4800 | 0.2076          | 0.1581 |
| 0.5204        | 41.76 | 5100 | 0.2181          | 0.1587 |
| 0.512         | 44.21 | 5400 | 0.2263          | 0.1607 |
| 0.465         | 46.66 | 5700 | 0.2204          | 0.1493 |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3