greenw0lf commited on
Commit
b1563e1
·
1 Parent(s): 66ccdee

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -27
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Wer
23
  type: wer
24
- value: 0.1685917915949865
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_12_0 dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.2748
35
- - Wer: 0.1686
36
 
37
  ## Model description
38
 
@@ -51,7 +51,7 @@ More information needed
51
  ### Training hyperparameters
52
 
53
  The following hyperparameters were used during training:
54
- - learning_rate: 0.0001
55
  - train_batch_size: 16
56
  - eval_batch_size: 8
57
  - seed: 42
@@ -67,29 +67,29 @@ The following hyperparameters were used during training:
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Wer |
69
  |:-------------:|:-----:|:----:|:---------------:|:------:|
70
- | 4.6809 | 2.1 | 250 | 2.0948 | 0.9948 |
71
- | 1.2928 | 4.2 | 500 | 0.4505 | 0.4003 |
72
- | 0.7887 | 6.3 | 750 | 0.3410 | 0.3287 |
73
- | 0.7422 | 8.4 | 1000 | 0.3017 | 0.2756 |
74
- | 0.7277 | 10.5 | 1250 | 0.3014 | 0.2624 |
75
- | 0.6339 | 12.61 | 1500 | 0.2833 | 0.2398 |
76
- | 0.5284 | 14.71 | 1750 | 0.2970 | 0.2404 |
77
- | 0.5186 | 16.81 | 2000 | 0.2886 | 0.2400 |
78
- | 0.515 | 18.91 | 2250 | 0.2891 | 0.2335 |
79
- | 0.5199 | 21.01 | 2500 | 0.2985 | 0.2261 |
80
- | 0.5228 | 23.11 | 2750 | 0.3026 | 0.2187 |
81
- | 0.5102 | 25.21 | 3000 | 0.2829 | 0.1994 |
82
- | 0.463 | 27.31 | 3250 | 0.2885 | 0.2012 |
83
- | 0.5072 | 29.41 | 3500 | 0.2936 | 0.1971 |
84
- | 0.4581 | 31.51 | 3750 | 0.2979 | 0.1912 |
85
- | 0.4103 | 33.61 | 4000 | 0.2935 | 0.1875 |
86
- | 0.3414 | 35.71 | 4250 | 0.2999 | 0.1860 |
87
- | 0.4484 | 37.82 | 4500 | 0.2917 | 0.1810 |
88
- | 0.3523 | 39.92 | 4750 | 0.2875 | 0.1759 |
89
- | 0.3763 | 42.02 | 5000 | 0.2901 | 0.1758 |
90
- | 0.2416 | 44.12 | 5250 | 0.2707 | 0.1740 |
91
- | 0.1878 | 46.22 | 5500 | 0.2707 | 0.1717 |
92
- | 0.1623 | 48.32 | 5750 | 0.2748 | 0.1686 |
93
 
94
 
95
  ### Framework versions
 
21
  metrics:
22
  - name: Wer
23
  type: wer
24
+ value: 0.15977951760699363
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_12_0 dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.2634
35
+ - Wer: 0.1598
36
 
37
  ## Model description
38
 
 
51
  ### Training hyperparameters
52
 
53
  The following hyperparameters were used during training:
54
+ - learning_rate: 8e-05
55
  - train_batch_size: 16
56
  - eval_batch_size: 8
57
  - seed: 42
 
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Wer |
69
  |:-------------:|:-----:|:----:|:---------------:|:------:|
70
+ | 4.7284 | 2.1 | 250 | 2.9453 | 1.0 |
71
+ | 1.7496 | 4.2 | 500 | 0.5141 | 0.4771 |
72
+ | 0.8168 | 6.3 | 750 | 0.3220 | 0.3148 |
73
+ | 0.7403 | 8.4 | 1000 | 0.2988 | 0.2573 |
74
+ | 0.7298 | 10.5 | 1250 | 0.2794 | 0.2347 |
75
+ | 0.6303 | 12.61 | 1500 | 0.2577 | 0.2164 |
76
+ | 0.5201 | 14.71 | 1750 | 0.2746 | 0.2162 |
77
+ | 0.5189 | 16.81 | 2000 | 0.2543 | 0.2034 |
78
+ | 0.5054 | 18.91 | 2250 | 0.2847 | 0.2071 |
79
+ | 0.5112 | 21.01 | 2500 | 0.2772 | 0.1979 |
80
+ | 0.5105 | 23.11 | 2750 | 0.2633 | 0.1920 |
81
+ | 0.5032 | 25.21 | 3000 | 0.2667 | 0.1856 |
82
+ | 0.46 | 27.31 | 3250 | 0.2730 | 0.1852 |
83
+ | 0.4992 | 29.41 | 3500 | 0.2626 | 0.1782 |
84
+ | 0.4535 | 31.51 | 3750 | 0.2778 | 0.1749 |
85
+ | 0.4036 | 33.61 | 4000 | 0.2825 | 0.1747 |
86
+ | 0.3347 | 35.71 | 4250 | 0.2797 | 0.1708 |
87
+ | 0.2708 | 37.82 | 4500 | 0.2662 | 0.1712 |
88
+ | 0.1825 | 39.92 | 4750 | 0.2652 | 0.1648 |
89
+ | 0.1654 | 42.02 | 5000 | 0.2719 | 0.1628 |
90
+ | 0.1387 | 44.12 | 5250 | 0.2552 | 0.1607 |
91
+ | 0.1367 | 46.22 | 5500 | 0.2641 | 0.1591 |
92
+ | 0.1218 | 48.32 | 5750 | 0.2634 | 0.1598 |
93
 
94
 
95
  ### Framework versions