growwithdaisy/crtdt_20241212_160352_20241217_084954
This is a standard PEFT LoRA derived from black-forest-labs/FLUX.1-dev.
The main validation prompt used during training was:
a photo of a daisy
Validation settings
- CFG:
3.5
- CFG Rescale:
0.0
- Steps:
28
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
69
- Resolution:
1024x1024
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
Training epochs: 384
Training steps: 10000
Learning rate: 0.0002
- Learning rate schedule: constant
- Warmup steps: 0
Max grad norm: 2.0
Effective batch size: 8
- Micro-batch size: 2
- Gradient accumulation steps: 1
- Number of GPUs: 4
Gradient checkpointing: True
Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible', 'flux_lora_target=all+ffs'])
Optimizer: optimi-stableadamwweight_decay=1e-3
Trainable parameter precision: Pure BF16
Caption dropout probability: 5.0%
LoRA Rank: 8
LoRA Alpha: 8.0
LoRA Dropout: 0.1
LoRA initialisation style: default
Datasets
crtdt_20241212_160352-512
- Repeats: 0
- Total number of images: ~60
- Total number of aspect buckets: 4
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
crtdt_20241212_160352-768
- Repeats: 0
- Total number of images: ~48
- Total number of aspect buckets: 7
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
crtdt_20241212_160352-1024
- Repeats: 0
- Total number of images: ~48
- Total number of aspect buckets: 7
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'playerzer0x/growwithdaisy/crtdt_20241212_160352_20241217_084954'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "a photo of a daisy"
## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
num_inference_steps=28,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(69),
width=1024,
height=1024,
guidance_scale=3.5,
).images[0]
image.save("output.png", format="PNG")
- Downloads last month
- 57
Model tree for growwithdaisy/crtdt_20241212_160352_20241217_084954
Base model
black-forest-labs/FLUX.1-dev