File size: 6,264 Bytes
57e28a6 82dbcbd 57e28a6 82dbcbd 57e28a6 82dbcbd 57e28a6 82dbcbd 57e28a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'dsndsn robe, light-skinned man with long brown hair, green and white stripes with orange and purple accents, white background'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
- text: 'dsndsn robe, half blue and white and red and white stripes with green teal and red mint green and yellow white accents, light-skinned man with long blonde hair, beige and eggshell curtains in background'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'dsndsn robe, green and white pseudo-tile pattern, red and cream polka-dot pattern, light-skinned man with curly brown hair and light-skinned asian man, giving the peace sign with his fingers, light-skinned asian man leaning against light-skinned man with curly brown hair, white background'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_0.png
- text: 'dsndsn pattern, green and yellow apron, on a fuzzy beige carpet'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_4_0.png
- text: 'a photo of a daisy'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_5_0.png
---
# growwithdaisy/glssrxdsndsn_flat_20241209_212811
This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
The main validation prompt used during training was:
```
a photo of a daisy
```
## Validation settings
- CFG: `3.5`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `FlowMatchEulerDiscreteScheduler`
- Seed: `69`
- Resolution: `1024x1024`
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 17
- Training steps: 2500
- Learning rate: 0.0001
- Learning rate schedule: constant
- Warmup steps: 0
- Max grad norm: 2.0
- Effective batch size: 8
- Micro-batch size: 2
- Gradient accumulation steps: 1
- Number of GPUs: 4
- Gradient checkpointing: True
- Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible'])
- Optimizer: optimi-stableadamwweight_decay=1e-3
- Trainable parameter precision: Pure BF16
- Caption dropout probability: 5.0%
### LyCORIS Config:
```json
{
"algo": "lokr",
"multiplier": 1,
"linear_dim": 1000000,
"linear_alpha": 1,
"factor": 16,
"init_lokr_norm": 0.001,
"apply_preset": {
"target_module": [
"FluxTransformerBlock",
"FluxSingleTransformerBlock"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
```
## Datasets
### glssrxdsndsn_flat-512
- Repeats: 0
- Total number of images: ~320
- Total number of aspect buckets: 2
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### glssrxdsndsn_flat-768
- Repeats: 0
- Total number of images: ~280
- Total number of aspect buckets: 2
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### glssrxdsndsn_flat-1024
- Repeats: 1
- Total number of images: ~204
- Total number of aspect buckets: 7
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
## Inference
```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_repo_id = 'playerzer0x/growwithdaisy/glssrxdsndsn_flat_20241209_212811'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()
prompt = "a photo of a daisy"
## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(69),
width=1024,
height=1024,
guidance_scale=3.5,
).images[0]
image.save("output.png", format="PNG")
```
|