initial commit
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 245.73 +/- 31.98
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d9ec13cce50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d9ec13ccee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d9ec13ccf70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d9ec13cd000>", "_build": "<function ActorCriticPolicy._build at 0x7d9ec13cd090>", "forward": "<function ActorCriticPolicy.forward at 0x7d9ec13cd120>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d9ec13cd1b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d9ec13cd240>", "_predict": "<function ActorCriticPolicy._predict at 0x7d9ec13cd2d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d9ec13cd360>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d9ec13cd3f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d9ec13cd480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d9ec136db00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697927252023142068, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICK2L249o65cw9IuUZqOrRKGWS7bfFoOAAAgD8AAIA/IJYAvqGWwD9MDxS/LzGOvWlljr00aAa+AAAAAAAAAACAslS99vQ+ukN68LrU2i62XjkOumw+DToAAIA/AACAPwC2Db1c82m6W35UOzwMgDVSh0i7Lpl4ugAAgD8AAIA/cw4SvlyRTDuuodm4oL4jNuDaEb1uWQQ4AACAPwAAgD+AoMG99vRTus5FzzpEtYi1bouIu/hJ7rkAAIA/AACAP2aI3L0pHGq6jPwnOzo8KbaRvm+7NOtEugAAAAAAAIA/ZtbZu1y/W7odH2E6clcRtsD0obuGFYO5AACAPwAAgD+ay3m89oQwurUXuTpaCEs15lxgOpuj1rkAAIA/AACAP03GI75P7HK8HoKcu4pUJbqZI849bF0GOwAAgD8AAIA/gGTfva49l7rZbQa6mvkIsVooTDoZcBk5AACAPwAAgD9mwGM9ca0dufGbKTmLGnU0Z2zPO5orTbgAAIA/AACAP82O/7xImYS6dqSAN36VcDLmfAU7kvaVtgAAgD8AAIA/mg5hvRSmlLoArhy1xsR2sDdkBDt7tmE0AACAPwAAgD8Az9C8e9CNuuQ8vrrZ5h+2EYQeO1jq2TkAAIA/AACAPzOa7rwUDI+66LLoub4QFrVXS7Y6nhwGOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGbBPsJIDo2MAWyUTegDjAF0lEdAmHuhYvFm4HV9lChoBkdAVGwTSLIgeWgHS8NoCEdAmH2mE0zj3nV9lChoBkdAYl1dB0IToWgHTegDaAhHQJiAGs3hn8N1fZQoaAZHQGZcSn1nM+xoB03oA2gIR0CYgijkuHvddX2UKGgGR0BIUb7Kq4pdaAdL7GgIR0CYhGeHzpX7dX2UKGgGR0AXJNRFZxJeaAdL32gIR0CYhc2qT8pDdX2UKGgGR0BjQghpxm03aAdN6ANoCEdAmIXrFn7HhnV9lChoBkdAZ01beuV5bGgHTegDaAhHQJiGG58Sf191fZQoaAZHQGD59H+ZPVNoB03oA2gIR0CYiOWgezUrdX2UKGgGR0BuFS5kK/mDaAdN8wJoCEdAmJC1ZkkKNXV9lChoBkdAY1qXN1QqJGgHTegDaAhHQJiTjv2GqPx1fZQoaAZHQGH773oLXtloB03oA2gIR0CYm4KEnLJTdX2UKGgGR0Bwf3zTWoWIaAdNcAFoCEdAmJwJu63AmHV9lChoBkdAYnbYGt6ol2gHTegDaAhHQJieIAQxveh1fZQoaAZHQGNx6Eal1r9oB03oA2gIR0CYqJ5sj3VTdX2UKGgGR0BhekEvCdjHaAdN6ANoCEdAmL+VfZ26kXV9lChoBkdAaJG+PBBRh2gHTegDaAhHQJjDRpUPxx11fZQoaAZHQGe3it7rs0JoB03oA2gIR0CYxiq0MPSVdX2UKGgGR0Bmimo3rD64aAdN6ANoCEdAmMiYOhCdBnV9lChoBkdAYa4hq0tyxWgHTegDaAhHQJjLP336AOJ1fZQoaAZHQGeDPnr6ciJoB03oA2gIR0CYzXnmq5skdX2UKGgGR0BGRnwob4rSaAdLzGgIR0CYzkwqRU3odX2UKGgGR0BkIAA4n4O+aAdN6ANoCEdAmNBxpxm03XV9lChoBkdAXurcL0BfbGgHTegDaAhHQJjScnQY1pF1fZQoaAZHQGlaZAyEcsFoB03oA2gIR0CY0rN9YwIudX2UKGgGR0BpS8wBYFJQaAdN6ANoCEdAmNZFQ/HHWHV9lChoBkdAZVpEXLvCuWgHTegDaAhHQJjhCkHlfZ51fZQoaAZHQF+Xgf2bobJoB03oA2gIR0CY5DSBbwBpdX2UKGgGR0Bf9iv9tMwlaAdN6ANoCEdAmOm5XU6PsHV9lChoBkdAZi2Wac7Qs2gHTegDaAhHQJjqHMV1wHZ1fZQoaAZHQGRFUwSJ0nxoB03oA2gIR0CY65X3g1m8dX2UKGgGR0BjOh+2E0zkaAdN6ANoCEdAmPMuwLVnVXV9lChoBkdASWKTW5H3DmgHTQkBaAhHQJkHkh1Tzd11fZQoaAZHQGSdH2AXl8xoB03oA2gIR0CZCdI2fkFOdX2UKGgGR0BkQ1E9dNWVaAdN6ANoCEdAmRFW5UcXFnV9lChoBkdAZGlmlImPYGgHTegDaAhHQJkUkfQrtmd1fZQoaAZHQGPKMN+b3GpoB03oA2gIR0CZGKMSK3uvdX2UKGgGR0BiGtYEGJN1aAdN6ANoCEdAmRvGmce8w3V9lChoBkdAY9AV45cTrWgHTegDaAhHQJkc5U5uIh11fZQoaAZHQGC2dc0Ltu1oB03oA2gIR0CZHy21UlzEdX2UKGgGR0BkhAam4y44aAdN6ANoCEdAmSEQvxpco3V9lChoBkdAY6DQXQ+lj2gHTegDaAhHQJkhQDKYAsF1fZQoaAZHQGSN2joIOYpoB03oA2gIR0CZI9syzolldX2UKGgGR0BkY9sFdLQHaAdN6ANoCEdAmStzEm6XjXV9lChoBkdAZyPcY64lQmgHTegDaAhHQJkt3KcNH6N1fZQoaAZHQGhKsqBmPHVoB03oA2gIR0CZM9PH1e0HdX2UKGgGR0Bi2CDRMN+caAdN6ANoCEdAmTV+wLVnVXV9lChoBkdAZNFwEyLyc2gHTegDaAhHQJk+g57w8W91fZQoaAZHQGHe1uBMBZJoB03oA2gIR0CZV/SMLncMdX2UKGgGR0Be7Pxx1gYxaAdN6ANoCEdAmVuDOcDr7nV9lChoBkdAZS3R3NcGDGgHTegDaAhHQJliP5DZ13d1fZQoaAZHQDiBkEs8PnVoB00QAWgIR0CZZDOFQEZBdX2UKGgGR0BkGO1twaR7aAdN6ANoCEdAmWScewLVnXV9lChoBkdAZY6l/pdKNGgHTegDaAhHQJlnO8mKIi11fZQoaAZHQGI5Z9E1EVpoB03oA2gIR0CZaUU7Sy+pdX2UKGgGR0Bex2mgrYoRaAdN6ANoCEdAmWn/JA+pwXV9lChoBkdAY4FDDTBqK2gHTegDaAhHQJlrkGHHmzV1fZQoaAZHQGZ8Ea/ATIxoB03oA2gIR0CZbO7rcCYDdX2UKGgGR0BkL/+IdlunaAdN6ANoCEdAmW0aD5CWvHV9lChoBkdAPrNqtYB/7WgHS+poCEdAmW3KS5iEx3V9lChoBkdAY6LGYrrgO2gHTegDaAhHQJlvtbxEv011fZQoaAZHQGcL+Hi3ocJoB03oA2gIR0CZd3ccU/OddX2UKGgGR0BiyEH4XXRPaAdN6ANoCEdAmXnrrLQokXV9lChoBkdAY7dNZ/0/W2gHTegDaAhHQJmAX40uUUx1fZQoaAZHQGmtsV+I/JNoB03oA2gIR0CZgir/KhcrdX2UKGgGR0Bj7oWFev6kaAdN6ANoCEdAmZa9dmg8KXV9lChoBkdAZPm2mYSg5GgHTegDaAhHQJmsAMVk+X91fZQoaAZHQF7YGhEjPfNoB03oA2gIR0CZtnOmR/3GdX2UKGgGR0Bh8rFMqSX/aAdN6ANoCEdAmbbzMJQcgnV9lChoBkdAT6hEUj9n9WgHS/5oCEdAmbnlpPAO8XV9lChoBkdAY+Nt0FKTS2gHTegDaAhHQJm6Jqxkd3l1fZQoaAZHQGK2qW9lEqloB03oA2gIR0CZvH/DLr5ZdX2UKGgGR0BkMGMju8braAdN6ANoCEdAmb1be/Ho5nV9lChoBkdAWNeq7yxzJmgHTegDaAhHQJm/CJCSidt1fZQoaAZHQF9iHdGiHqNoB03oA2gIR0CZwI6T4cm0dX2UKGgGR0BmQ33ztkWiaAdN6ANoCEdAmcC8wHqu83V9lChoBkdAYuWmMOwxFmgHTegDaAhHQJnBfCrLhaV1fZQoaAZHQF5m5uqFRHhoB03oA2gIR0CZw9YhMajvdX2UKGgGR0BinjpA2Q4kaAdN6ANoCEdAmc3WHgxagXV9lChoBkdAY/pS5y2hI2gHTegDaAhHQJnRQrd30PJ1fZQoaAZHQHBQ75RCQcRoB02oAWgIR0CZ2NULDye7dX2UKGgGR0Bgcoku6ErYaAdN6ANoCEdAmdkADmr8znV9lChoBkdAZF1vS+g132gHTegDaAhHQJnagERradt1fZQoaAZHQGPKjwhGH59oB03oA2gIR0CZ+ZhX8wYcdX2UKGgGR0BlyZtxdY4iaAdN6ANoCEdAmgR7NW2gF3V9lChoBkdAYHdv5xiobWgHTegDaAhHQJoFISvkill1fZQoaAZHQGcCxkmQbMpoB03oA2gIR0CaCNe2uxKQdX2UKGgGR0BlwuDOC5EuaAdN6ANoCEdAmgkm2G7Bf3V9lChoBkdAZy6GsV+I/WgHTegDaAhHQJoMRle4Tbp1fZQoaAZHQGYI5AIIF/xoB03oA2gIR0CaD52+PBBSdX2UKGgGR0BiIyij+JgtaAdN6ANoCEdAmhGaQV9F4XV9lChoBkdAZ65donKGL2gHTegDaAhHQJoR2/ATIvJ1fZQoaAZHQGgM0ONHYpVoB03oA2gIR0CaEtHlOoHcdX2UKGgGR0BhN0MNMGoraAdN6ANoCEdAmhT/KU3XI3V9lChoBkdAYegf7JnxrmgHTegDaAhHQJob7s3Q2Mt1fZQoaAZHQGiLgMc6vJRoB03oA2gIR0CaHkRrJr+HdX2UKGgGR0Bnx+Vkc0cfaAdN6ANoCEdAmiQUUXYUWXV9lChoBkdAYLikhzNliGgHTegDaAhHQJokQn8baRJ1fZQoaAZHQGA8cCHRCyBoB03oA2gIR0CaJfHuqm0mdX2UKGgGR0Bls763y7PIaAdN6ANoCEdAmjaPukUKzHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5cbacc582d731124ba6e08e9bd63dc17981d0ed0fdb332e6352eee261ebabb9
|
3 |
+
size 148050
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d9ec13cce50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d9ec13ccee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d9ec13ccf70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d9ec13cd000>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d9ec13cd090>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d9ec13cd120>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d9ec13cd1b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d9ec13cd240>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d9ec13cd2d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d9ec13cd360>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d9ec13cd3f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d9ec13cd480>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d9ec136db00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1697927252023142068,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICK2L249o65cw9IuUZqOrRKGWS7bfFoOAAAgD8AAIA/IJYAvqGWwD9MDxS/LzGOvWlljr00aAa+AAAAAAAAAACAslS99vQ+ukN68LrU2i62XjkOumw+DToAAIA/AACAPwC2Db1c82m6W35UOzwMgDVSh0i7Lpl4ugAAgD8AAIA/cw4SvlyRTDuuodm4oL4jNuDaEb1uWQQ4AACAPwAAgD+AoMG99vRTus5FzzpEtYi1bouIu/hJ7rkAAIA/AACAP2aI3L0pHGq6jPwnOzo8KbaRvm+7NOtEugAAAAAAAIA/ZtbZu1y/W7odH2E6clcRtsD0obuGFYO5AACAPwAAgD+ay3m89oQwurUXuTpaCEs15lxgOpuj1rkAAIA/AACAP03GI75P7HK8HoKcu4pUJbqZI849bF0GOwAAgD8AAIA/gGTfva49l7rZbQa6mvkIsVooTDoZcBk5AACAPwAAgD9mwGM9ca0dufGbKTmLGnU0Z2zPO5orTbgAAIA/AACAP82O/7xImYS6dqSAN36VcDLmfAU7kvaVtgAAgD8AAIA/mg5hvRSmlLoArhy1xsR2sDdkBDt7tmE0AACAPwAAgD8Az9C8e9CNuuQ8vrrZ5h+2EYQeO1jq2TkAAIA/AACAPzOa7rwUDI+66LLoub4QFrVXS7Y6nhwGOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGbBPsJIDo2MAWyUTegDjAF0lEdAmHuhYvFm4HV9lChoBkdAVGwTSLIgeWgHS8NoCEdAmH2mE0zj3nV9lChoBkdAYl1dB0IToWgHTegDaAhHQJiAGs3hn8N1fZQoaAZHQGZcSn1nM+xoB03oA2gIR0CYgijkuHvddX2UKGgGR0BIUb7Kq4pdaAdL7GgIR0CYhGeHzpX7dX2UKGgGR0AXJNRFZxJeaAdL32gIR0CYhc2qT8pDdX2UKGgGR0BjQghpxm03aAdN6ANoCEdAmIXrFn7HhnV9lChoBkdAZ01beuV5bGgHTegDaAhHQJiGG58Sf191fZQoaAZHQGD59H+ZPVNoB03oA2gIR0CYiOWgezUrdX2UKGgGR0BuFS5kK/mDaAdN8wJoCEdAmJC1ZkkKNXV9lChoBkdAY1qXN1QqJGgHTegDaAhHQJiTjv2GqPx1fZQoaAZHQGH773oLXtloB03oA2gIR0CYm4KEnLJTdX2UKGgGR0Bwf3zTWoWIaAdNcAFoCEdAmJwJu63AmHV9lChoBkdAYnbYGt6ol2gHTegDaAhHQJieIAQxveh1fZQoaAZHQGNx6Eal1r9oB03oA2gIR0CYqJ5sj3VTdX2UKGgGR0BhekEvCdjHaAdN6ANoCEdAmL+VfZ26kXV9lChoBkdAaJG+PBBRh2gHTegDaAhHQJjDRpUPxx11fZQoaAZHQGe3it7rs0JoB03oA2gIR0CYxiq0MPSVdX2UKGgGR0Bmimo3rD64aAdN6ANoCEdAmMiYOhCdBnV9lChoBkdAYa4hq0tyxWgHTegDaAhHQJjLP336AOJ1fZQoaAZHQGeDPnr6ciJoB03oA2gIR0CYzXnmq5skdX2UKGgGR0BGRnwob4rSaAdLzGgIR0CYzkwqRU3odX2UKGgGR0BkIAA4n4O+aAdN6ANoCEdAmNBxpxm03XV9lChoBkdAXurcL0BfbGgHTegDaAhHQJjScnQY1pF1fZQoaAZHQGlaZAyEcsFoB03oA2gIR0CY0rN9YwIudX2UKGgGR0BpS8wBYFJQaAdN6ANoCEdAmNZFQ/HHWHV9lChoBkdAZVpEXLvCuWgHTegDaAhHQJjhCkHlfZ51fZQoaAZHQF+Xgf2bobJoB03oA2gIR0CY5DSBbwBpdX2UKGgGR0Bf9iv9tMwlaAdN6ANoCEdAmOm5XU6PsHV9lChoBkdAZi2Wac7Qs2gHTegDaAhHQJjqHMV1wHZ1fZQoaAZHQGRFUwSJ0nxoB03oA2gIR0CY65X3g1m8dX2UKGgGR0BjOh+2E0zkaAdN6ANoCEdAmPMuwLVnVXV9lChoBkdASWKTW5H3DmgHTQkBaAhHQJkHkh1Tzd11fZQoaAZHQGSdH2AXl8xoB03oA2gIR0CZCdI2fkFOdX2UKGgGR0BkQ1E9dNWVaAdN6ANoCEdAmRFW5UcXFnV9lChoBkdAZGlmlImPYGgHTegDaAhHQJkUkfQrtmd1fZQoaAZHQGPKMN+b3GpoB03oA2gIR0CZGKMSK3uvdX2UKGgGR0BiGtYEGJN1aAdN6ANoCEdAmRvGmce8w3V9lChoBkdAY9AV45cTrWgHTegDaAhHQJkc5U5uIh11fZQoaAZHQGC2dc0Ltu1oB03oA2gIR0CZHy21UlzEdX2UKGgGR0BkhAam4y44aAdN6ANoCEdAmSEQvxpco3V9lChoBkdAY6DQXQ+lj2gHTegDaAhHQJkhQDKYAsF1fZQoaAZHQGSN2joIOYpoB03oA2gIR0CZI9syzolldX2UKGgGR0BkY9sFdLQHaAdN6ANoCEdAmStzEm6XjXV9lChoBkdAZyPcY64lQmgHTegDaAhHQJkt3KcNH6N1fZQoaAZHQGhKsqBmPHVoB03oA2gIR0CZM9PH1e0HdX2UKGgGR0Bi2CDRMN+caAdN6ANoCEdAmTV+wLVnVXV9lChoBkdAZNFwEyLyc2gHTegDaAhHQJk+g57w8W91fZQoaAZHQGHe1uBMBZJoB03oA2gIR0CZV/SMLncMdX2UKGgGR0Be7Pxx1gYxaAdN6ANoCEdAmVuDOcDr7nV9lChoBkdAZS3R3NcGDGgHTegDaAhHQJliP5DZ13d1fZQoaAZHQDiBkEs8PnVoB00QAWgIR0CZZDOFQEZBdX2UKGgGR0BkGO1twaR7aAdN6ANoCEdAmWScewLVnXV9lChoBkdAZY6l/pdKNGgHTegDaAhHQJlnO8mKIi11fZQoaAZHQGI5Z9E1EVpoB03oA2gIR0CZaUU7Sy+pdX2UKGgGR0Bex2mgrYoRaAdN6ANoCEdAmWn/JA+pwXV9lChoBkdAY4FDDTBqK2gHTegDaAhHQJlrkGHHmzV1fZQoaAZHQGZ8Ea/ATIxoB03oA2gIR0CZbO7rcCYDdX2UKGgGR0BkL/+IdlunaAdN6ANoCEdAmW0aD5CWvHV9lChoBkdAPrNqtYB/7WgHS+poCEdAmW3KS5iEx3V9lChoBkdAY6LGYrrgO2gHTegDaAhHQJlvtbxEv011fZQoaAZHQGcL+Hi3ocJoB03oA2gIR0CZd3ccU/OddX2UKGgGR0BiyEH4XXRPaAdN6ANoCEdAmXnrrLQokXV9lChoBkdAY7dNZ/0/W2gHTegDaAhHQJmAX40uUUx1fZQoaAZHQGmtsV+I/JNoB03oA2gIR0CZgir/KhcrdX2UKGgGR0Bj7oWFev6kaAdN6ANoCEdAmZa9dmg8KXV9lChoBkdAZPm2mYSg5GgHTegDaAhHQJmsAMVk+X91fZQoaAZHQF7YGhEjPfNoB03oA2gIR0CZtnOmR/3GdX2UKGgGR0Bh8rFMqSX/aAdN6ANoCEdAmbbzMJQcgnV9lChoBkdAT6hEUj9n9WgHS/5oCEdAmbnlpPAO8XV9lChoBkdAY+Nt0FKTS2gHTegDaAhHQJm6Jqxkd3l1fZQoaAZHQGK2qW9lEqloB03oA2gIR0CZvH/DLr5ZdX2UKGgGR0BkMGMju8braAdN6ANoCEdAmb1be/Ho5nV9lChoBkdAWNeq7yxzJmgHTegDaAhHQJm/CJCSidt1fZQoaAZHQF9iHdGiHqNoB03oA2gIR0CZwI6T4cm0dX2UKGgGR0BmQ33ztkWiaAdN6ANoCEdAmcC8wHqu83V9lChoBkdAYuWmMOwxFmgHTegDaAhHQJnBfCrLhaV1fZQoaAZHQF5m5uqFRHhoB03oA2gIR0CZw9YhMajvdX2UKGgGR0BinjpA2Q4kaAdN6ANoCEdAmc3WHgxagXV9lChoBkdAY/pS5y2hI2gHTegDaAhHQJnRQrd30PJ1fZQoaAZHQHBQ75RCQcRoB02oAWgIR0CZ2NULDye7dX2UKGgGR0Bgcoku6ErYaAdN6ANoCEdAmdkADmr8znV9lChoBkdAZF1vS+g132gHTegDaAhHQJnagERradt1fZQoaAZHQGPKjwhGH59oB03oA2gIR0CZ+ZhX8wYcdX2UKGgGR0BlyZtxdY4iaAdN6ANoCEdAmgR7NW2gF3V9lChoBkdAYHdv5xiobWgHTegDaAhHQJoFISvkill1fZQoaAZHQGcCxkmQbMpoB03oA2gIR0CaCNe2uxKQdX2UKGgGR0BlwuDOC5EuaAdN6ANoCEdAmgkm2G7Bf3V9lChoBkdAZy6GsV+I/WgHTegDaAhHQJoMRle4Tbp1fZQoaAZHQGYI5AIIF/xoB03oA2gIR0CaD52+PBBSdX2UKGgGR0BiIyij+JgtaAdN6ANoCEdAmhGaQV9F4XV9lChoBkdAZ65donKGL2gHTegDaAhHQJoR2/ATIvJ1fZQoaAZHQGgM0ONHYpVoB03oA2gIR0CaEtHlOoHcdX2UKGgGR0BhN0MNMGoraAdN6ANoCEdAmhT/KU3XI3V9lChoBkdAYegf7JnxrmgHTegDaAhHQJob7s3Q2Mt1fZQoaAZHQGiLgMc6vJRoB03oA2gIR0CaHkRrJr+HdX2UKGgGR0Bnx+Vkc0cfaAdN6ANoCEdAmiQUUXYUWXV9lChoBkdAYLikhzNliGgHTegDaAhHQJokQn8baRJ1fZQoaAZHQGA8cCHRCyBoB03oA2gIR0CaJfHuqm0mdX2UKGgGR0Bls763y7PIaAdN6ANoCEdAmjaPukUKzHVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:388871052d5d7521d22f0cd3c3b459bf2f3ca49e0928ab026a4856790ed98435
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb0fffacbe02c009250eb791286c9c7bdfc028784f3e3d6a301d3824a2192fe1
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (189 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 245.73134610000002, "std_reward": 31.980334647551, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-21T22:52:18.549063"}
|