gurgutan commited on
Commit
fceeee4
·
1 Parent(s): 979bb8b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -19
README.md CHANGED
@@ -1,53 +1,35 @@
1
  ---
2
  license: mit
3
  language:
4
- - ru
5
  - en
6
- library_name: transformers
7
- ---
8
-
9
  tags:
10
  - gpt3
11
  - transformers
12
  ---
13
  # ruGPT-13B-4bit
14
-
15
  This files are GPTQ model files for sberbank [ruGPT-3.5-13B](https://huggingface.co/ai-forever/ruGPT-3.5-13B) model.
16
-
17
  ## Technical details
18
-
19
  Model was quantized to 4-bit
20
-
21
  ## Examples of usage
22
-
23
  First make sure you have AutoGPTQ installed:
24
-
25
  GITHUB_ACTIONS=true pip install auto-gptq
26
-
27
  Then try the following example code:
28
-
29
  ```python
30
  from transformers import AutoTokenizer, TextGenerationPipeline
31
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
32
-
33
  repo_name = "gurgutan/ruGPT-13B-4bit"
34
-
35
  # load tokenizer from Hugging Face Hub
36
  tokenizer = AutoTokenizer.from_pretrained(repo_name, use_fast=True)
37
-
38
  # download quantized model from Hugging Face Hub and load to the first GPU
39
  model = AutoGPTQForCausalLM.from_quantized(repo_name, device="cuda:0", use_safetensors=True, use_triton=False)
40
-
41
  # inference with model.generate
42
  request = "Буря мглою небо кроет"
43
  print(tokenizer.decode(model.generate(**tokenizer(request, return_tensors="pt").to(model.device))[0]))
44
-
45
  # or you can also use pipeline
46
  pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)
47
  print(pipeline(request)[0]["generated_text"])
48
 
49
  ```
50
-
51
  # Original model: [ruGPT-3.5 13B](https://huggingface.co/ai-forever/ruGPT-3.5-13B)
52
-
53
  Language model for Russian. Model has 13B parameters as you can guess from it's name. This is our biggest model so far and it was used for trainig GigaChat (read more about it in the [article](https://habr.com/ru/companies/sberbank/articles/730108/)).
 
1
  ---
2
  license: mit
3
  language:
 
4
  - en
5
+ - ru
 
 
6
  tags:
7
  - gpt3
8
  - transformers
9
  ---
10
  # ruGPT-13B-4bit
 
11
  This files are GPTQ model files for sberbank [ruGPT-3.5-13B](https://huggingface.co/ai-forever/ruGPT-3.5-13B) model.
 
12
  ## Technical details
 
13
  Model was quantized to 4-bit
 
14
  ## Examples of usage
 
15
  First make sure you have AutoGPTQ installed:
 
16
  GITHUB_ACTIONS=true pip install auto-gptq
 
17
  Then try the following example code:
 
18
  ```python
19
  from transformers import AutoTokenizer, TextGenerationPipeline
20
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
 
21
  repo_name = "gurgutan/ruGPT-13B-4bit"
 
22
  # load tokenizer from Hugging Face Hub
23
  tokenizer = AutoTokenizer.from_pretrained(repo_name, use_fast=True)
 
24
  # download quantized model from Hugging Face Hub and load to the first GPU
25
  model = AutoGPTQForCausalLM.from_quantized(repo_name, device="cuda:0", use_safetensors=True, use_triton=False)
 
26
  # inference with model.generate
27
  request = "Буря мглою небо кроет"
28
  print(tokenizer.decode(model.generate(**tokenizer(request, return_tensors="pt").to(model.device))[0]))
 
29
  # or you can also use pipeline
30
  pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)
31
  print(pipeline(request)[0]["generated_text"])
32
 
33
  ```
 
34
  # Original model: [ruGPT-3.5 13B](https://huggingface.co/ai-forever/ruGPT-3.5-13B)
 
35
  Language model for Russian. Model has 13B parameters as you can guess from it's name. This is our biggest model so far and it was used for trainig GigaChat (read more about it in the [article](https://habr.com/ru/companies/sberbank/articles/730108/)).