File size: 2,025 Bytes
13609d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: peft
license: mit
base_model: unsloth/Phi-3.5-mini-instruct
tags:
- trl
- sft
- unsloth
- generated_from_trainer
model-index:
- name: Phi-3.5-mini-instruct-2024-10-28_15-54-04
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Phi-3.5-mini-instruct-2024-10-28_15-54-04

This model is a fine-tuned version of [unsloth/Phi-3.5-mini-instruct](https://huggingface.co/unsloth/Phi-3.5-mini-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6209

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.6797        | 0.2492 | 148  | 0.6636          |
| 0.6457        | 0.4983 | 296  | 0.6456          |
| 0.6394        | 0.7475 | 444  | 0.6378          |
| 0.6539        | 0.9966 | 592  | 0.6329          |
| 0.6116        | 1.2458 | 740  | 0.6299          |
| 0.617         | 1.4949 | 888  | 0.6284          |
| 0.5936        | 1.7441 | 1036 | 0.6254          |
| 0.5994        | 1.9933 | 1184 | 0.6231          |
| 0.6277        | 2.2424 | 1332 | 0.6226          |
| 0.6123        | 2.4916 | 1480 | 0.6217          |
| 0.6583        | 2.7407 | 1628 | 0.6210          |
| 0.5918        | 2.9899 | 1776 | 0.6209          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 2.19.2
- Tokenizers 0.20.1