File size: 5,735 Bytes
657194b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
library_name: transformers
license: mit
base_model: BAAI/bge-base-en-v1.5
tags:
- generated_from_trainer
model-index:
- name: bge-base-en-v1.5-2024-12-05_13-34-00
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bge-base-en-v1.5-2024-12-05_13-34-00

This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0228
- Spearman: 0.9285
- Pearson: 0.9285
- Mse: 0.0228

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step   | Validation Loss | Spearman | Pearson | Mse    |
|:-------------:|:------:|:------:|:---------------:|:--------:|:-------:|:------:|
| 0.0525        | 0.1000 | 2110   | 0.0402          | 0.8683   | 0.8725  | 0.0402 |
| 0.0351        | 0.1999 | 4220   | 0.0424          | 0.8824   | 0.8816  | 0.0424 |
| 0.0314        | 0.2999 | 6330   | 0.0355          | 0.8829   | 0.8860  | 0.0355 |
| 0.038         | 0.3999 | 8440   | 0.0339          | 0.8940   | 0.8932  | 0.0339 |
| 0.0287        | 0.4998 | 10550  | 0.0318          | 0.8959   | 0.8982  | 0.0318 |
| 0.027         | 0.5998 | 12660  | 0.0308          | 0.8986   | 0.9010  | 0.0308 |
| 0.0376        | 0.6998 | 14770  | 0.0309          | 0.9019   | 0.9038  | 0.0309 |
| 0.0264        | 0.7997 | 16880  | 0.0301          | 0.9017   | 0.9049  | 0.0301 |
| 0.0311        | 0.8997 | 18990  | 0.0294          | 0.9030   | 0.9070  | 0.0294 |
| 0.0303        | 0.9997 | 21100  | 0.0286          | 0.9052   | 0.9085  | 0.0286 |
| 0.0252        | 1.0996 | 23210  | 0.0290          | 0.9085   | 0.9093  | 0.0290 |
| 0.0312        | 1.1996 | 25320  | 0.0287          | 0.9084   | 0.9093  | 0.0287 |
| 0.0238        | 1.2996 | 27430  | 0.0277          | 0.9095   | 0.9132  | 0.0277 |
| 0.0326        | 1.3995 | 29540  | 0.0295          | 0.9089   | 0.9096  | 0.0295 |
| 0.0204        | 1.4995 | 31650  | 0.0272          | 0.9104   | 0.9132  | 0.0272 |
| 0.0237        | 1.5995 | 33760  | 0.0304          | 0.9120   | 0.9099  | 0.0304 |
| 0.0285        | 1.6994 | 35870  | 0.0263          | 0.9128   | 0.9168  | 0.0263 |
| 0.0218        | 1.7994 | 37980  | 0.0262          | 0.9152   | 0.9185  | 0.0262 |
| 0.032         | 1.8994 | 40090  | 0.0259          | 0.9149   | 0.9186  | 0.0259 |
| 0.0211        | 1.9993 | 42200  | 0.0256          | 0.9155   | 0.9197  | 0.0256 |
| 0.0209        | 2.0993 | 44310  | 0.0253          | 0.9174   | 0.9190  | 0.0253 |
| 0.016         | 2.1993 | 46420  | 0.0259          | 0.9180   | 0.9194  | 0.0259 |
| 0.0122        | 2.2992 | 48530  | 0.0257          | 0.9181   | 0.9211  | 0.0257 |
| 0.0147        | 2.3992 | 50640  | 0.0276          | 0.9205   | 0.9210  | 0.0276 |
| 0.015         | 2.4992 | 52750  | 0.0253          | 0.9196   | 0.9223  | 0.0253 |
| 0.0201        | 2.5991 | 54860  | 0.0243          | 0.9208   | 0.9238  | 0.0243 |
| 0.0137        | 2.6991 | 56970  | 0.0243          | 0.9214   | 0.9232  | 0.0243 |
| 0.0158        | 2.7991 | 59080  | 0.0239          | 0.9224   | 0.9250  | 0.0239 |
| 0.018         | 2.8990 | 61190  | 0.0238          | 0.9234   | 0.9258  | 0.0238 |
| 0.0175        | 2.9990 | 63300  | 0.0234          | 0.9231   | 0.9264  | 0.0234 |
| 0.0122        | 3.0990 | 65410  | 0.0234          | 0.9241   | 0.9265  | 0.0234 |
| 0.0107        | 3.1989 | 67520  | 0.0238          | 0.9241   | 0.9264  | 0.0238 |
| 0.0081        | 3.2989 | 69630  | 0.0238          | 0.9248   | 0.9264  | 0.0238 |
| 0.0093        | 3.3989 | 71740  | 0.0233          | 0.9251   | 0.9270  | 0.0233 |
| 0.0128        | 3.4988 | 73850  | 0.0229          | 0.9258   | 0.9279  | 0.0229 |
| 0.0106        | 3.5988 | 75960  | 0.0231          | 0.9260   | 0.9281  | 0.0231 |
| 0.0134        | 3.6988 | 78070  | 0.0230          | 0.9261   | 0.9284  | 0.0230 |
| 0.0087        | 3.7987 | 80180  | 0.0227          | 0.9269   | 0.9295  | 0.0227 |
| 0.0086        | 3.8987 | 82290  | 0.0228          | 0.9267   | 0.9290  | 0.0228 |
| 0.0101        | 3.9987 | 84400  | 0.0225          | 0.9271   | 0.9294  | 0.0225 |
| 0.0075        | 4.0986 | 86510  | 0.0227          | 0.9271   | 0.9290  | 0.0227 |
| 0.0086        | 4.1986 | 88620  | 0.0225          | 0.9273   | 0.9295  | 0.0225 |
| 0.0067        | 4.2986 | 90730  | 0.0227          | 0.9277   | 0.9293  | 0.0227 |
| 0.009         | 4.3985 | 92840  | 0.0224          | 0.9275   | 0.9297  | 0.0224 |
| 0.007         | 4.4985 | 94950  | 0.0225          | 0.9278   | 0.9297  | 0.0225 |
| 0.0066        | 4.5985 | 97060  | 0.0225          | 0.9280   | 0.9300  | 0.0225 |
| 0.0118        | 4.6984 | 99170  | 0.0225          | 0.9279   | 0.9298  | 0.0225 |
| 0.0071        | 4.7984 | 101280 | 0.0225          | 0.9279   | 0.9299  | 0.0225 |
| 0.0071        | 4.8984 | 103390 | 0.0225          | 0.9280   | 0.9299  | 0.0225 |
| 0.0087        | 4.9983 | 105500 | 0.0225          | 0.9280   | 0.9299  | 0.0225 |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 2.19.2
- Tokenizers 0.20.3