File size: 5,784 Bytes
dc5c5a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
library_name: transformers
license: mit
base_model: BAAI/bge-large-en-v1.5
tags:
- generated_from_trainer
model-index:
- name: bge-large-en-v1.5-2024-12-10_07-12-15-quality-weight-1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bge-large-en-v1.5-2024-12-10_07-12-15-quality-weight-1

This model is a fine-tuned version of [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0151
- Spearman: 0.9383
- Pearson: 0.9340
- Mse: 0.0151

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Spearman | Pearson | Mse    |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:-------:|:------:|
| 0.0301        | 0.0997 | 263   | 0.0276          | 0.8847   | 0.8733  | 0.0276 |
| 0.0296        | 0.1994 | 526   | 0.0279          | 0.8977   | 0.8830  | 0.0279 |
| 0.0314        | 0.2990 | 789   | 0.0236          | 0.9045   | 0.8946  | 0.0236 |
| 0.0228        | 0.3987 | 1052  | 0.0231          | 0.9065   | 0.8942  | 0.0231 |
| 0.0241        | 0.4984 | 1315  | 0.0217          | 0.9111   | 0.9031  | 0.0217 |
| 0.0162        | 0.5981 | 1578  | 0.0221          | 0.9114   | 0.9033  | 0.0221 |
| 0.0227        | 0.6978 | 1841  | 0.0203          | 0.9168   | 0.9101  | 0.0203 |
| 0.0203        | 0.7975 | 2104  | 0.0211          | 0.9181   | 0.9105  | 0.0211 |
| 0.0215        | 0.8971 | 2367  | 0.0199          | 0.9155   | 0.9102  | 0.0199 |
| 0.0203        | 0.9968 | 2630  | 0.0193          | 0.9204   | 0.9151  | 0.0193 |
| 0.0187        | 1.0963 | 2893  | 0.0188          | 0.9234   | 0.9151  | 0.0188 |
| 0.0192        | 1.1960 | 3156  | 0.0185          | 0.9240   | 0.9186  | 0.0185 |
| 0.0128        | 1.2956 | 3419  | 0.0195          | 0.9241   | 0.9177  | 0.0195 |
| 0.0128        | 1.3953 | 3682  | 0.0175          | 0.9261   | 0.9213  | 0.0175 |
| 0.0191        | 1.4950 | 3945  | 0.0177          | 0.9256   | 0.9206  | 0.0177 |
| 0.0129        | 1.5947 | 4208  | 0.0186          | 0.9246   | 0.9199  | 0.0186 |
| 0.0167        | 1.6944 | 4471  | 0.0179          | 0.9272   | 0.9223  | 0.0179 |
| 0.0098        | 1.7940 | 4734  | 0.0177          | 0.9282   | 0.9249  | 0.0177 |
| 0.0155        | 1.8937 | 4997  | 0.0173          | 0.9275   | 0.9239  | 0.0173 |
| 0.0153        | 1.9934 | 5260  | 0.0181          | 0.9300   | 0.9261  | 0.0181 |
| 0.0107        | 2.0929 | 5523  | 0.0167          | 0.9311   | 0.9267  | 0.0167 |
| 0.0126        | 2.1925 | 5786  | 0.0164          | 0.9306   | 0.9264  | 0.0164 |
| 0.0096        | 2.2922 | 6049  | 0.0164          | 0.9318   | 0.9273  | 0.0164 |
| 0.012         | 2.3919 | 6312  | 0.0162          | 0.9311   | 0.9279  | 0.0162 |
| 0.0126        | 2.4916 | 6575  | 0.0170          | 0.9329   | 0.9285  | 0.0170 |
| 0.0086        | 2.5913 | 6838  | 0.0166          | 0.9323   | 0.9283  | 0.0166 |
| 0.0088        | 2.6910 | 7101  | 0.0160          | 0.9334   | 0.9295  | 0.0160 |
| 0.0088        | 2.7906 | 7364  | 0.0158          | 0.9339   | 0.9302  | 0.0158 |
| 0.013         | 2.8903 | 7627  | 0.0158          | 0.9336   | 0.9299  | 0.0158 |
| 0.0073        | 2.9900 | 7890  | 0.0157          | 0.9346   | 0.9308  | 0.0157 |
| 0.0071        | 3.0894 | 8153  | 0.0155          | 0.9354   | 0.9317  | 0.0155 |
| 0.0081        | 3.1891 | 8416  | 0.0158          | 0.9360   | 0.9317  | 0.0158 |
| 0.0092        | 3.2888 | 8679  | 0.0155          | 0.9358   | 0.9316  | 0.0155 |
| 0.0088        | 3.3885 | 8942  | 0.0156          | 0.9361   | 0.9324  | 0.0156 |
| 0.0058        | 3.4882 | 9205  | 0.0153          | 0.9366   | 0.9329  | 0.0153 |
| 0.0061        | 3.5879 | 9468  | 0.0158          | 0.9367   | 0.9322  | 0.0158 |
| 0.0081        | 3.6875 | 9731  | 0.0154          | 0.9369   | 0.9333  | 0.0154 |
| 0.0053        | 3.7872 | 9994  | 0.0150          | 0.9369   | 0.9336  | 0.0150 |
| 0.0063        | 3.8869 | 10257 | 0.0149          | 0.9373   | 0.9341  | 0.0149 |
| 0.006         | 3.9866 | 10520 | 0.0152          | 0.9375   | 0.9341  | 0.0152 |
| 0.0046        | 4.0860 | 10783 | 0.0150          | 0.9376   | 0.9345  | 0.0150 |
| 0.0044        | 4.1857 | 11046 | 0.0150          | 0.9376   | 0.9343  | 0.0150 |
| 0.0051        | 4.2854 | 11309 | 0.0151          | 0.9377   | 0.9343  | 0.0151 |
| 0.0062        | 4.3851 | 11572 | 0.0150          | 0.9378   | 0.9346  | 0.0150 |
| 0.0044        | 4.4848 | 11835 | 0.0150          | 0.9380   | 0.9346  | 0.0150 |
| 0.0052        | 4.5845 | 12098 | 0.0150          | 0.9378   | 0.9346  | 0.0150 |
| 0.0037        | 4.6841 | 12361 | 0.0151          | 0.9378   | 0.9345  | 0.0151 |
| 0.0031        | 4.7838 | 12624 | 0.0151          | 0.9378   | 0.9346  | 0.0151 |
| 0.0053        | 4.8835 | 12887 | 0.0150          | 0.9379   | 0.9346  | 0.0150 |
| 0.0046        | 4.9832 | 13150 | 0.0150          | 0.9379   | 0.9346  | 0.0150 |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 2.19.2
- Tokenizers 0.21.0