File size: 2,635 Bytes
082c765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
library_name: transformers
license: mit
base_model: BAAI/bge-small-en-v1.5
tags:
- generated_from_trainer
model-index:
- name: bge-small-en-v1.5-2024-12-06_21-55-53-quality-weight-0.1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bge-small-en-v1.5-2024-12-06_21-55-53-quality-weight-0.1

This model is a fine-tuned version of [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0214
- Spearman: 0.9268
- Pearson: 0.9311
- Mse: 0.0214

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Spearman | Pearson | Mse    |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:-------:|:------:|
| 0.0325        | 0.3998 | 1055  | 0.0286          | 0.8985   | 0.9051  | 0.0286 |
| 0.0278        | 0.7997 | 2110  | 0.0255          | 0.9081   | 0.9158  | 0.0255 |
| 0.0238        | 1.1995 | 3165  | 0.0249          | 0.9123   | 0.9200  | 0.0249 |
| 0.0235        | 1.5994 | 4220  | 0.0224          | 0.9199   | 0.9262  | 0.0224 |
| 0.0211        | 1.9992 | 5275  | 0.0230          | 0.9212   | 0.9286  | 0.0230 |
| 0.0182        | 2.3991 | 6330  | 0.0222          | 0.9218   | 0.9299  | 0.0222 |
| 0.0172        | 2.7989 | 7385  | 0.0211          | 0.9240   | 0.9318  | 0.0211 |
| 0.0136        | 3.1988 | 8440  | 0.0212          | 0.9253   | 0.9312  | 0.0212 |
| 0.014         | 3.5986 | 9495  | 0.0210          | 0.9263   | 0.9326  | 0.0210 |
| 0.0144        | 3.9985 | 10550 | 0.0208          | 0.9264   | 0.9330  | 0.0208 |
| 0.0109        | 4.3983 | 11605 | 0.0210          | 0.9264   | 0.9329  | 0.0210 |
| 0.0123        | 4.7982 | 12660 | 0.0210          | 0.9267   | 0.9331  | 0.0210 |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 2.19.2
- Tokenizers 0.20.3