|
#!/bin/bash |
|
|
|
|
|
|
|
if [ ! -f $1/pretrain.seed.0.summary ] || [ ! -s $1/pretrain.seed.0.summary ]; then |
|
Rscript visualize.train.process/plot.test.AUC.by.step.R $1/pretrain.seed.0.yaml > $1/pretrain.seed.0.summary |
|
fi |
|
number=$(cat $1/pretrain.seed.0.summary | grep 'val' | grep -oE '\([0-9]+\)' | sed 's/[(|)]//g') |
|
logdir=$(cat $1/pretrain.seed.0.yaml | grep log_dir | sed 's/.*: //') |
|
if [ -z $number ]; then |
|
best_model="null" |
|
else |
|
best_model=$logdir"model.step."$number".pt" |
|
fi |
|
echo "Best model is: "$best_model |
|
|
|
lr_warmup_steps=$(cat $1/pretrain.seed.0.yaml | grep lr_warmup_steps | sed 's/.*: //' | sed 's/ #.*//g') |
|
num_save_batches=$(cat $1/pretrain.seed.0.yaml | grep num_save_batches | sed 's/.*: //' | sed 's/ #.*//g') |
|
target_num_save_batches=400 |
|
num_epochs=$(cat $1/pretrain.seed.0.yaml | grep num_epochs | sed 's/.*: //' | sed 's/ #.*//g') |
|
batch_size=$(cat $1/pretrain.seed.0.yaml | grep batch_size | sed 's/.*: //' | sed 's/ #.*//g') |
|
lr=$(cat $1/pretrain.seed.0.yaml | grep lr: | sed 's/.*: //' | sed 's/ #.*//g') |
|
half_lr=$(printf "%.1e" "$(echo "scale=10; $(printf "%f" "$lr")" | bc)") |
|
five_lr=$(printf "%.1e" "$(echo "scale=10; $(printf "%f" "$lr") * 5" | bc)") |
|
lr_min=$(cat $1/pretrain.seed.0.yaml | grep lr_min: | sed 's/.*: //' | sed 's/ #.*//g') |
|
half_lr_min=$(echo "$lr_min" | awk '{ printf "%.1e", $1/10 }') |
|
data_split=$(cat $1/pretrain.seed.0.yaml | grep data_split_fn | sed 's/.*: //' | sed 's/ #.*//g') |
|
loss_fn=$(cat $1/pretrain.seed.0.yaml | grep ^loss_fn | sed 's/.*: //' | sed 's/ #.*//g') |
|
drop_out=$(cat $1/pretrain.seed.0.yaml | grep drop_out | sed 's/.*: //' | sed 's/ #.*//g') |
|
num_steps_update=$(cat $1/pretrain.seed.0.yaml | grep num_steps_update | sed 's/.*: //' | sed 's/ #.*//g') |
|
ngpus=$(cat $1/pretrain.seed.0.yaml | grep ngpus | sed 's/.*: //' | sed 's/ #.*//g') |
|
nworkers=$(cat $1/pretrain.seed.0.yaml | grep num_workers | sed 's/.*: //' | sed 's/ #.*//g') |
|
target_nworkers=0 |
|
batch_size=$(cat $1/pretrain.seed.0.yaml | grep batch_size | sed 's/.*: //' | sed 's/ #.*//g') |
|
echo "loss_fn was: "$loss_fn |
|
changed_data=false |
|
if grep -q "_by_anno" $1/pretrain.seed.0.yaml; then |
|
echo "modify data-file-train in original yaml" |
|
if [ ! -f $1/pretrain.seed.0.yaml.bak ]; then |
|
cp $1/pretrain.seed.0.yaml $1/pretrain.seed.0.yaml.bak |
|
fi |
|
sed -i 's|_by_anno|""|g' $1/pretrain.seed.0.yaml |
|
changed_data=true |
|
fi |
|
|
|
for gene in PTEN PTEN.bin CCR5 CXCR4 NUDT15 SNCA CYP2C9 GCK ASPA Stab $(cat scripts/gene.txt) $(cat scripts/gene.itan.txt) $(cat scripts/gene.pfams.txt) fluorescence |
|
do |
|
|
|
cp $1/pretrain.seed.0.yaml $1/$gene.yaml |
|
|
|
sed -i "s|ngpus: "$ngpus"|ngpus: 1\nuse_lora: |g" $1/$gene.yaml |
|
|
|
sed -i "s|lr: "$lr"|lr: "$half_lr"|g" $1/$gene.yaml |
|
sed -i "s|lr_min: "$lr_min"|lr_min: "$half_lr_min"|g" $1/$gene.yaml |
|
|
|
sed -i "s|data_type: ClinVar|data_type: "$gene"|g" $1/$gene.yaml |
|
|
|
sed -i "s|loss_fn: "$loss_fn"|loss_fn: mse_loss|g" $1/$gene.yaml |
|
|
|
sed -i "s|log_dir: "$logdir"|log_dir: "$logdir"TL."$gene".seed.0/|g" $1/$gene.yaml |
|
|
|
sed -i "s|drop_out: "$drop_out"|drop_out: 0.1|g" $1/$gene.yaml |
|
|
|
sed -i "s|num_workers: "$nworkers"|num_workers: "$target_nworkers"|g" $1/$gene.yaml |
|
|
|
if grep -q "loaded_msa" $1/pretrain.seed.0.yaml; then |
|
sed -i "s|loaded_msa: false|loaded_msa: true|g" $1/$gene.yaml |
|
else |
|
echo "loaded_msa: true" >> $1/$gene.yaml |
|
fi |
|
|
|
if grep -q "loaded_confidence" $1/pretrain.seed.0.yaml; then |
|
sed -i "s|loaded_confidence: false|loaded_confidence: true|g" $1/$gene.yaml |
|
else |
|
echo "loaded_confidence: true" >> $1/$gene.yaml |
|
fi |
|
if grep -q "loaded_esm" $1/pretrain.seed.0.yaml; then |
|
sed -i "s|loaded_esm: false|loaded_esm: true|g" $1/$gene.yaml |
|
else |
|
echo "loaded_esm: true" >> $1/$gene.yaml |
|
fi |
|
done |
|
|
|
|
|
if [ "$loss_fn" == "combined_loss" ] || [ "$loss_fn" == "weighted_combined_loss" ] || [ "$loss_fn" == "GP_loss" ]; then |
|
for gene in $(cat scripts/gene.txt) $(cat scripts/gene.itan.txt) $(cat scripts/gene.pfams.txt) |
|
do |
|
sed -i "s|loss_fn: mse_loss|loss_fn: "$loss_fn"|g" $1/$gene.yaml |
|
done |
|
fi |
|
|
|
|
|
for gene in PTEN PTEN.bin CCR5 CXCR4 NUDT15 SNCA CYP2C9 GCK ASPA Stab $(cat scripts/gene.txt) $(cat scripts/gene.itan.txt) $(cat scripts/gene.pfams.txt) |
|
do |
|
|
|
orig_load_model=$(cat $1/pretrain.seed.0.yaml | grep ^load_model | sed 's/.*: //' | sed 's/ #.*//g') |
|
sed -i "s|load_model: "$orig_load_model"|load_model: "$best_model"|g" $1/$gene.yaml |
|
sed -i "s|partial_load_model: true|partial_load_model: false|g" $1/$gene.yaml |
|
|
|
sed -i "s|num_epochs: "$num_epochs"|num_epochs: "$(($num_epochs))"|g" $1/$gene.yaml |
|
|
|
sed -i "s|lr_warmup_steps: "$lr_warmup_steps"|lr_warmup_steps: "$(($lr_warmup_steps/20))"|g" $1/$gene.yaml |
|
|
|
if [[ "PTEN PTEN.bin CCR5 CXCR4 NUDT15 SNCA CYP2C9 GCK ASPA DDX3X" == *"$gene"* ]]; then |
|
sed -i "s|num_save_batches: "$num_save_batches"|num_save_batches: "$(($target_num_save_batches))"|g" $1/$gene.yaml |
|
else |
|
if [[ ! "Stab" == *"$gene"* ]]; then |
|
sed -i "s|num_save_batches: "$num_save_batches"|num_save_batches: "$(($target_num_save_batches/80))"|g" $1/$gene.yaml |
|
fi |
|
fi |
|
done |
|
|
|
|
|
for gene in PTEN PTEN.bin CCR5 CXCR4 NUDT15 SNCA CYP2C9 GCK ASPA Stab |
|
do |
|
sed -i "s|pretrain/|"$gene"/|g" $1/$gene.yaml |
|
|
|
echo "convert_to_onesite: true" >> $1/$gene.yaml |
|
|
|
sed -i "s|num_steps_update: "$num_steps_update"|num_steps_update: 1|g" $1/$gene.yaml |
|
|
|
sed -i "s|contrastive_loss_fn: cosin_contrastive_loss|contrastive_loss_fn: null|g" $1/$gene.yaml |
|
|
|
if [[ "PTEN.bin" == "$gene" ]]; then |
|
sed -i "s|loss_fn: mse_loss|loss_fn: binary_cross_entropy|g" $1/$gene.yaml |
|
else |
|
sed -i "s|BinaryClassification|Regression|g" $1/$gene.yaml |
|
fi |
|
|
|
if grep -q "Onesite" $1/$gene.yaml; then |
|
sed -i "s|loss_fn: mse_loss|loss_fn: mse_loss_weighted|g" $1/$gene.yaml |
|
fi |
|
done |
|
|
|
for gene in PTEN NUDT15 SNCA CYP2C9 GCK ASPA CXCR4 CCR5 |
|
do |
|
|
|
sed -i "s|num_epochs: "$num_epochs"|num_epochs: "$(($num_epochs*2))"|g" $1/$gene.yaml |
|
done |
|
|
|
for gene in PTEN PTEN.bin NUDT15 SNCA CYP2C9 GCK ASPA Stab |
|
do |
|
sed -i "s|output_dim: 1|output_dim: 2|g" $1/$gene.yaml |
|
done |
|
|
|
for gene in CCR5 CXCR4 |
|
do |
|
sed -i "s|output_dim: 1|output_dim: 3|g" $1/$gene.yaml |
|
done |
|
|
|
for gene in PTEN CCR5 CXCR4 |
|
do |
|
sed -i "s|num_epochs: "$num_epochs"|num_epochs: "$(($num_epochs))"|g" $1/$gene.yaml |
|
done |
|
|
|
for gene in $(cat scripts/gene.txt) $(cat scripts/gene.itan.txt) $(cat scripts/gene.pfams.txt) |
|
do |
|
sed -i "s|pretrain/|ICC.seed.0/"$gene"/|g" $1/$gene.yaml |
|
|
|
sed -i "s|train_size: 0.95|train_size: 0.75|g" $1/$gene.yaml |
|
sed -i "s|val_size: 0.05|val_size: 0.25|g" $1/$gene.yaml |
|
sed -i "s|output_dim: 1|output_dim: 1|g" $1/$gene.yaml |
|
sed -i "s|num_steps_update: "$num_steps_update"|num_steps_update: 1|g" $1/$gene.yaml |
|
|
|
sed -i "s|loss_fn: mse_loss|loss_fn: weighted_loss|g" $1/$gene.yaml |
|
done |
|
|
|
|
|
for gene in $(cat scripts/gene.pfams.txt) |
|
do |
|
sed -i 's|data_split_fn: ""|data_split_fn: _by_anno|g' $1/$gene.yaml |
|
done |
|
|
|
|
|
for gene in fluorescence |
|
do |
|
sed -i "s|pretrain/|"$gene"/|g" $1/$gene.yaml |
|
|
|
sed -i "s|lr: "$half_lr"|lr: "$lr"|g" $1/$gene.yaml |
|
|
|
|
|
|
|
sed -i 's|data_split_fn: ""|data_split_fn: _by_anno|g' $1/$gene.yaml |
|
|
|
sed -i "s|contrastive_loss_fn: cosin_contrastive_loss|contrastive_loss_fn: null|g" $1/$gene.yaml |
|
|
|
sed -i "s|BinaryClassification|Regression|g" $1/$gene.yaml |
|
done |
|
|
|
|
|
for gene in PTEN PTEN.bin CCR5 CXCR4 NUDT15 SNCA CYP2C9 GCK ASPA Stab $(cat scripts/gene.txt) $(cat scripts/gene.itan.txt) $(cat scripts/gene.pfams.txt) fluorescence |
|
do |
|
|
|
mv $1/$gene.yaml $1/$gene.seed.0.yaml |
|
for seed in {1..4} |
|
do |
|
cp $1/$gene.seed.0.yaml $1/$gene.seed.$seed.yaml |
|
sed -i "s|seed: 0|seed: "$seed"|g" $1/$gene.seed.$seed.yaml |
|
sed -i "s|log_dir: "$logdir"TL."$gene".seed.0/|log_dir: "$logdir"TL."$gene".seed."$seed"/|g" $1/$gene.seed.$seed.yaml |
|
done |
|
|
|
mkdir -p $1/$gene |
|
mv $1/$gene.seed.*.yaml $1/$gene |
|
done |
|
|
|
mkdir $1/PTEN.replicates.rest/ |
|
for replicate in {1..8} |
|
do |
|
cp $1/PTEN/PTEN.seed.0.yaml $1/PTEN.replicates.rest/PTEN.replicate.rest.$replicate.yaml |
|
sed -i "s|output_dim: 2|output_dim: 1|g" $1/PTEN.replicates.rest/PTEN.replicate.rest.$replicate.yaml |
|
sed -i "s|PTEN|PTEN.replicate.rest."$replicate"|g" $1/PTEN.replicates.rest/PTEN.replicate.rest.$replicate.yaml |
|
done |
|
|
|
bash scripts/DMS.subset.prepare.yaml.sh $1 |
|
|
|
|
|
need_large_window_list=$(cat scripts/gene.txt)" "$(cat scripts/gene.itan.txt)" "$(cat scripts/gene.pfams.txt) |
|
added_large_window_list="" |
|
for gene in $need_large_window_list |
|
do |
|
added_large_window_list=$added_large_window_list" "$gene".large.window" |
|
done |
|
|
|
for gene in $need_large_window_list |
|
do |
|
mkdir $1/$gene.large.window/ |
|
cp $1/$gene/$gene.seed.0.yaml $1/$gene.large.window/$gene.large.window.seed.0.yaml |
|
sed -i "s|max_len: 251|max_len: 1251|g" $1/$gene.large.window/$gene.large.window.seed.0.yaml |
|
sed -i "s|log_dir: "$logdir"TL."$gene".seed.0/|log_dir: "$logdir"TL."$gene".large.window.seed.0/|g" $1/$gene.large.window/$gene.large.window.seed.0.yaml |
|
done |
|
|
|
|
|
for gene in $(cat scripts/gene.txt) $(cat scripts/gene.itan.txt) $(cat scripts/gene.pfams.txt) $added_large_window_list |
|
do |
|
mkdir $1/$gene.5fold/ |
|
cp $1/$gene/$gene.seed.0.yaml $1/$gene.5fold/$gene.fold.0.yaml |
|
for fold in {1..4} |
|
do |
|
cp $1/$gene.5fold/$gene.fold.0.yaml $1/$gene.5fold/$gene.fold.$fold.yaml |
|
sed -i "s|ICC.seed.0|ICC.seed."$fold"|g" $1/$gene.5fold/$gene.fold.$fold.yaml |
|
sed -i "s|TL."$gene".seed.0|TL."$gene".seed.0.fold."$fold"|g" $1/$gene.5fold/$gene.fold.$fold.yaml |
|
done |
|
done |
|
|
|
|
|
for gene in $(cat scripts/gene.txt) |
|
do |
|
|
|
for subset in 1 2 4 6 |
|
do |
|
mkdir $1/$gene.subset.$subset.5fold/ |
|
cp -r $1/$gene.5fold/* $1/$gene.subset.$subset.5fold/ |
|
for fold in {0..4} |
|
do |
|
|
|
if [[ $subset -lt 3 ]]; then |
|
sed -i "s|num_save_batches: "$(($target_num_save_batches/80))"|num_save_batches: "$(($target_num_save_batches/200))"|g" $1/$gene.subset.$subset.5fold/$gene.fold.$fold.yaml |
|
|
|
sed -i "s|lr_warmup_steps: "$(($lr_warmup_steps/20))"|lr_warmup_steps: "$(($lr_warmup_steps/400))"|g" $1/$gene.subset.$subset.5fold/$gene.fold.$fold.yaml |
|
else |
|
|
|
sed -i "s|lr_warmup_steps: "$(($lr_warmup_steps/20))"|lr_warmup_steps: "$(($lr_warmup_steps/200))"|g" $1/$gene.subset.$subset.5fold/$gene.fold.$fold.yaml |
|
fi |
|
|
|
sed -i "s|"$gene"|"$gene".subset2."$subset"|g" $1/$gene.subset.$subset.5fold/$gene.fold.$fold.yaml |
|
mv $1/$gene.subset.$subset.5fold/$gene.fold.$fold.yaml $1/$gene.subset.$subset.5fold/$gene.subset.$subset.fold.$fold.yaml |
|
done |
|
done |
|
done |
|
|
|
|
|
for gene in PTEN PTEN.bin NUDT15 CCR5 CXCR4 SNCA CYP2C9 GCK ASPA Stab |
|
do |
|
mkdir $1/$gene.5fold/ |
|
cp $1/$gene/$gene.seed.0.yaml $1/$gene.5fold/$gene.fold.0.yaml |
|
for fold in {1..4} |
|
do |
|
cp $1/$gene.5fold/$gene.fold.0.yaml $1/$gene.5fold/$gene.fold.$fold.yaml |
|
sed -i "s|training|train.seed."$fold"|g" $1/$gene.5fold/$gene.fold.$fold.yaml |
|
sed -i "s|testing.csv|test.seed."$fold".csv|g" $1/$gene.5fold/$gene.fold.$fold.yaml |
|
sed -i "s|TL."$gene".seed.0|TL."$gene".seed.0.fold."$fold"|g" $1/$gene.5fold/$gene.fold.$fold.yaml |
|
done |
|
done |
|
|
|
echo $changed_data |
|
if [ $changed_data = true ]; then |
|
echo "change data-file-train back to original yaml" |
|
mv $1/pretrain.seed.0.yaml.bak $1/pretrain.seed.0.yaml |
|
fi |
|
|