## data set specific | |
dataset: GraphMutationDataset | |
data_file_train: ./data.files/pretrain/training.csv | |
data_file_train_ddp_prefix: ./data.files/pretrain/training | |
data_file_test: ./data.files/pretrain/testing.csv | |
data_type: ClinVar | |
loop: true # add self loop or not | |
node_embedding_type: esm # esm, one-hot, one-hot-idx, or aa-5dim | |
graph_type: 1d-neighbor # af2 or 1d-neighbor | |
add_plddt: true # add plddt or not | |
add_conservation: true # add conservation or not | |
add_position: true # add positional embeddings or not | |
add_sidechain: true # add side chain or not | |
use_cb: true | |
loaded_msa: false | |
loaded_confidence: true | |
add_msa: true # add msa or not | |
add_dssp: true # add dssp or not | |
alt_type: concat # concat or alt | |
computed_graph: true | |
max_len: 251 | |
radius: 50 # radius for KNN graph, larger than curoff_upper | |
## model specific | |
load_model: null | |
model_class: PreMode_Star_CON | |
model: equivariant-transformer-star2-softmax | |
neighbor_embedding: true | |
cutoff_lower: 0.0 # graph related | |
cutoff_upper: 36.0 # graph related | |
max_num_neighbors: 36 # graph related | |
x_in_channels: 1313 # x input size, only used if different from x_channels, 1280 + 1 + 20 + 12 | |
alt_projector: 2593 # alt input size, 1280 + 1 + 20 + 12 + 1280 | |
x_in_embedding_type: Linear_gelu # x input embedding type, only used if x_in_channels is not None | |
x_channels: 512 # x embedding size | |
x_hidden_channels: 512 # x hidden size | |
vec_in_channels: 35 # vector embedding size | |
vec_channels: 32 # vector hidden size | |
vec_hidden_channels: 512 # vector hidden size, must be equal to x_channels (why? go to model page) | |
distance_influence: both | |
share_kv: false | |
num_heads: 16 # number of attention heads | |
num_layers: 2 | |
num_edge_attr: 444 # 1, from msa_contacts | |
num_nodes: 1 | |
num_rbf: 32 # number of radial basis functions, use a small size for quicker training | |
rbf_type: expnormunlim | |
trainable_rbf: true | |
num_workers: 0 | |
output_model: EquivariantBinaryClassificationStarPoolScalar | |
reduce_op: mean | |
output_dim: 1 | |
activation: silu | |
attn_activation: silu | |
# aggr: mean # has to be mean because different protein sizes, removed and set to default (note previous default was add) | |
drop_out: 0.6 | |
## training specific | |
trainer_fn: PreMode_trainer | |
seed: 0 | |
lr: 1e-4 # important | |
lr_factor: 0.8 # important | |
weight_decay: 0.0 | |
lr_min: 1e-6 # important | |
lr_patience: 2 # important | |
num_steps_update: 8 # important, how many steps before updating the model, use large number for large batch size | |
lr_warmup_steps: 4000 # important | |
batch_size: 8 | |
ngpus: 4 | |
num_epochs: 20 | |
loss_fn: weighted_loss_pretrain | |
data_split_fn: "" | |
y_weight: 1.0 | |
contrastive_loss_fn: null | |
reset_train_dataloader_each_epoch: true | |
test_size: null | |
train_size: 0.95 | |
val_size: 0.05 | |
## log specific | |
num_save_epochs: 1 | |
num_save_batches: 2000 # save every 1000 batches, this also control the validation frequency | |
log_dir: ./PreMode.results/PreMode.noStructure/ | |