Safetensors
llama
h-j-han commited on
Commit
e3c122a
1 Parent(s): 4d9e4f4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md CHANGED
@@ -1,3 +1,66 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ datasets:
4
+ - allenai/MADLAD-400
5
+ language:
6
+ - en
7
+ - ko
8
+ - el
9
+ - ru
10
+ - bg
11
+ base_model:
12
+ - meta-llama/Llama-2-7b-hf
13
  ---
14
+ VocADT is a solution for vocabulary adaptation using adapter modules that are trained to learn the optimal linear combination of existing embeddings while keeping the model’s weights fixed.
15
+ VocADT offers a flexible and scalable solution without requiring external resources or language constraints.
16
+
17
+
18
+ ## New Vocabulary Adapted Models
19
+ Only the input/output embeddings are replaced, while all other original weights of base model remain fixed.
20
+ These are the merged version: after training the adapters, we merge the original embeddings with the adapter to generate the new embeddings.
21
+ | Name | Adapted Model | Base Model | New Vocab Size | Focused Languages |
22
+ |---|---|---|---|---|
23
+ | VocADT-Latin-Mistral | [h-j-han/Mistral-7B-VocADT-50k-Latin](https://huggingface.co/h-j-han/Mistral-7B-VocADT-50k-Latin) | [Mistral](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 50k | Swahili (sw), Indonesian (id), Estonian (et), Haitian Creole (ht), English (en)|
24
+ | VocADT-Mixed-Mistral | [h-j-han/Mistral-7B-VocADT-50k-Mixed](https://huggingface.co/h-j-han/Mistral-7B-VocADT-50k-Mixed) | [Mistral](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 50k | Korean (ko), Greek (el), Russian (ru), Bulgarian (bg), English (en) |
25
+ | VocADT-Cyrillic-Mistral | [h-j-han/Mistral-7B-VocADT-50k-Cyrillic](https://huggingface.co/h-j-han/Mistral-7B-VocADT-50k-Cyrillic) | [Mistral](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 50k | Russian (ru), Bulgarian (bg), Ukrainian (uk), Kazakh (kk), English (en) |
26
+ |||||
27
+ | VocADT-Latin-LLama | [h-j-han/Llama2-7B-VocADT-50k-Latin](https://huggingface.co/h-j-han/Llama2-7B-VocADT-50k-Latin) | [Llama](https://huggingface.co/meta-llama/Llama-2-7b-hf) | 50k | Swahili (sw), Indonesian (id), Estonian (et), Haitian Creole (ht), English (en)|
28
+ | VocADT-Mixed-LLama | [h-j-han/Llama2-7B-VocADT-50k-Mixed](https://huggingface.co/h-j-han/Llama2-7B-VocADT-50k-Mixed) | [Llama](https://huggingface.co/meta-llama/Llama-2-7b-hf) | 50k | Korean (ko), Greek (el), Russian (ru), Bulgarian (bg), English (en) |
29
+ | VocADT-Cyrillic-LLama | [h-j-han/Llama2-7B-VocADT-50k-Cyrillic](https://huggingface.co/h-j-han/Llama2-7B-VocADT-50k-Cyrillic) | [Llama](https://huggingface.co/meta-llama/Llama-2-7b-hf) | 50k | Russian (ru), Bulgarian (bg), Ukrainian (uk), Kazakh (kk), English (en) |
30
+
31
+
32
+ ## Quick Start
33
+ ```python
34
+ from transformers import AutoModelForCausalLM, AutoTokenizer
35
+
36
+ # model_name = "meta-llama/Llama-2-7b-hf" # Base Model
37
+ model_name = "h-j-han/Llama2-7B-VocADT-50k-Mixed" # Vocabulary Adapted Model
38
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
39
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
40
+
41
+ prefix = "\nEnglish: Hello \nKorean: 안녕하세요 \nEnglish: Thank you\nKorean: 고맙습니다\nEnglish: "
42
+ line = "I'm a student."
43
+ suffix = f"\nKorean:"
44
+ prompt = prefix + line + suffix
45
+
46
+ inputs = tokenizer(prompt, return_tensors="pt")
47
+ for item in inputs:
48
+ inputs[item] = inputs[item].cuda()
49
+ outputs = model.generate(**inputs, max_new_tokens=4)
50
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
51
+ ```
52
+
53
+ ## Reference
54
+ We provide code in Github repo : https://github.com/h-j-han/VocADT
55
+ Also, please find details in this paper :
56
+ ```
57
+ @misc{han2024vocadt,
58
+ title={Adapters for Altering LLM Vocabularies: What Languages Benefit the Most?},
59
+ author={HyoJung Han and Akiko Eriguchi and Haoran Xu and Hieu Hoang and Marine Carpuat and Huda Khayrallah},
60
+ year={2024},
61
+ eprint={2410.09644},
62
+ archivePrefix={arXiv},
63
+ primaryClass={cs.CL},
64
+ url={https://arxiv.org/abs/2410.09644},
65
+ }
66
+ ```