ilu000 commited on
Commit
23e89c4
·
verified ·
1 Parent(s): 61f04be

Upload 9 files

Browse files
README.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: transformers
5
+ license: apache-2.0
6
+ tags:
7
+ - gpt
8
+ - llm
9
+ - large language model
10
+ - h2o-llmstudio
11
+ inference: false
12
+ thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
13
+ ---
14
+ # Model Card
15
+ ## Summary
16
+
17
+ h2o-danube-1.8b-chat-sft is a chat fine-tuned model by H2O.ai with 1.8 billion parameters. We release three versions of this model:
18
+
19
+ | Model Name | Description |
20
+ |:-----------------------------------------------------------------------------------|:----------------|
21
+ | [h2oai/h2o-danube-1.8b-base](https://huggingface.co/h2oai/h2o-danube-1.8b-base) | Base model |
22
+ | [h2oai/h2o-danube-1.8b-sft](https://huggingface.co/h2oai/h2o-danube-1.8b-sft) | SFT tuned |
23
+ | [h2oai/h2o-danube-1.8b-chat](https://huggingface.co/h2oai/h2o-danube-1.8b-chat) | SFT + DPO tuned |
24
+
25
+ This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
26
+
27
+ ## Model Architecture
28
+
29
+ We adjust the Llama 2 architecture for a total of around 1.8b parameters. We use the original Llama 2 tokenizer with a vocabulary size of 32,000 and train our model up to a context length of 16,384. We incorporate the sliding window attention from mistral with a size of 4,096.
30
+
31
+ The details of the model architecture are:
32
+
33
+ | Hyperparameter | Value |
34
+ |:----------------|:-------|
35
+ | n_layers | 24 |
36
+ | n_heads | 32 |
37
+ | n_query_groups | 8 |
38
+ | n_embd | 2560 |
39
+ | vocab size | 32000 |
40
+ | sequence length | 16384 |
41
+
42
+ ## Usage
43
+
44
+ To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed.
45
+
46
+ ```bash
47
+ pip install transformers==4.36.1
48
+ ```
49
+
50
+ ```python
51
+ import torch
52
+ from transformers import pipeline
53
+
54
+ pipe = pipeline(
55
+ "text-generation",
56
+ model="h2oai/h2o-danube-1.8b-chat-sft",
57
+ torch_dtype=torch.bfloat16,
58
+ device_map="auto",
59
+ )
60
+
61
+ # We use the HF Tokenizer chat template to format each message
62
+ # https://huggingface.co/docs/transformers/main/en/chat_templating
63
+ messages = [
64
+ {"role": "user", "content": "Why is drinking water so healthy?"},
65
+ ]
66
+ prompt = pipe.tokenizer.apply_chat_template(
67
+ messages,
68
+ tokenize=False,
69
+ add_generation_prompt=True,
70
+ )
71
+ res = pipe(
72
+ prompt,
73
+ max_new_tokens=256,
74
+ )
75
+ print(res[0]["generated_text"])
76
+ # <|system|>You are a friendly chatbot</s><|prompt|>Why is drinking water so healthy?</s><|answer|> Drinking water is healthy for several reasons: [...]
77
+ ```
78
+
79
+ ## Quantization and sharding
80
+
81
+ You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```.
82
+
83
+ ## Model Architecture
84
+
85
+ ```
86
+ MistralForCausalLM(
87
+ (model): MistralModel(
88
+ (embed_tokens): Embedding(32000, 2560, padding_idx=0)
89
+ (layers): ModuleList(
90
+ (0-23): 24 x MistralDecoderLayer(
91
+ (self_attn): MistralAttention(
92
+ (q_proj): Linear(in_features=2560, out_features=2560, bias=False)
93
+ (k_proj): Linear(in_features=2560, out_features=640, bias=False)
94
+ (v_proj): Linear(in_features=2560, out_features=640, bias=False)
95
+ (o_proj): Linear(in_features=2560, out_features=2560, bias=False)
96
+ (rotary_emb): MistralRotaryEmbedding()
97
+ )
98
+ (mlp): MistralMLP(
99
+ (gate_proj): Linear(in_features=2560, out_features=6912, bias=False)
100
+ (up_proj): Linear(in_features=2560, out_features=6912, bias=False)
101
+ (down_proj): Linear(in_features=6912, out_features=2560, bias=False)
102
+ (act_fn): SiLU()
103
+ )
104
+ (input_layernorm): MistralRMSNorm()
105
+ (post_attention_layernorm): MistralRMSNorm()
106
+ )
107
+ )
108
+ (norm): MistralRMSNorm()
109
+ )
110
+ (lm_head): Linear(in_features=2560, out_features=32000, bias=False)
111
+ )
112
+ ```
113
+
114
+ ## Model Configuration
115
+
116
+ This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
117
+
118
+
119
+ ## Disclaimer
120
+
121
+ Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
122
+
123
+ - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
124
+ - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
125
+ - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
126
+ - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
127
+ - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
128
+ - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
129
+
130
+ By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
cfg.yaml ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ architecture:
2
+ backbone_dtype: bfloat16
3
+ force_embedding_gradients: false
4
+ gradient_checkpointing: true
5
+ intermediate_dropout: 0.0
6
+ pretrained: true
7
+ pretrained_weights: ''
8
+ augmentation:
9
+ neftune_noise_alpha: 0.0
10
+ random_parent_probability: 0.0
11
+ skip_parent_probability: 0.0
12
+ token_mask_probability: 0.0
13
+ dataset:
14
+ add_eos_token_to_answer: true
15
+ add_eos_token_to_prompt: true
16
+ add_eos_token_to_system: true
17
+ answer_column: output
18
+ chatbot_author: H2O.ai
19
+ chatbot_name: h2oGPT
20
+ data_sample: 1.0
21
+ data_sample_choice:
22
+ - Train
23
+ - Validation
24
+ limit_chained_samples: true
25
+ mask_prompt_labels: true
26
+ parent_id_column: parent_id
27
+ personalize: false
28
+ prompt_column:
29
+ - instruction
30
+ system_column: None
31
+ text_answer_separator: <|answer|>
32
+ text_prompt_start: <|prompt|>
33
+ text_system_start: <|system|>
34
+ train_dataframe: sft.pq
35
+ validation_dataframe: None
36
+ validation_size: 0.01
37
+ validation_strategy: automatic
38
+ environment:
39
+ compile_model: false
40
+ deepspeed_reduce_bucket_size: 1000000
41
+ deepspeed_stage3_param_persistence_threshold: 1000000
42
+ deepspeed_stage3_prefetch_bucket_size: 1000000
43
+ find_unused_parameters: false
44
+ gpus:
45
+ - '0'
46
+ - '1'
47
+ - '2'
48
+ - '3'
49
+ - '4'
50
+ - '5'
51
+ - '6'
52
+ - '7'
53
+ huggingface_branch: main
54
+ mixed_precision: false
55
+ number_of_workers: 8
56
+ seed: -1
57
+ trust_remote_code: true
58
+ use_deepspeed: false
59
+ experiment_name: h2o-danube-1.8b-sft
60
+ llm_backbone: h2oai/h2o-danube-1.8b-base
61
+ logging:
62
+ logger: Neptune
63
+ neptune_project: h2o/h2o
64
+ output_directory: output/
65
+ prediction:
66
+ batch_size_inference: 0
67
+ do_sample: false
68
+ max_length_inference: 1023
69
+ metric: GPT
70
+ metric_gpt_model: gpt-4-1106-preview
71
+ metric_gpt_template: mt-bench
72
+ min_length_inference: 2
73
+ num_beams: 1
74
+ num_history: 4
75
+ repetition_penalty: 1.1
76
+ stop_tokens: ''
77
+ temperature: 0.0
78
+ top_k: 0
79
+ top_p: 1.0
80
+ problem_type: text_causal_language_modeling
81
+ tokenizer:
82
+ add_prefix_space: false
83
+ add_prompt_answer_tokens: false
84
+ max_length: 16384
85
+ max_length_answer: 8192
86
+ max_length_prompt: 8192
87
+ padding_quantile: 1.0
88
+ use_fast: true
89
+ training:
90
+ batch_size: 8
91
+ differential_learning_rate: 1.0e-05
92
+ differential_learning_rate_layers: []
93
+ drop_last_batch: true
94
+ epochs: 1
95
+ evaluate_before_training: false
96
+ evaluation_epochs: 0.25
97
+ grad_accumulation: 1
98
+ gradient_clip: 0.0
99
+ learning_rate: 5.0e-05
100
+ lora: false
101
+ lora_alpha: 16
102
+ lora_dropout: 0.05
103
+ lora_r: 4
104
+ lora_target_modules: ''
105
+ loss_function: TokenAveragedCrossEntropy
106
+ optimizer: AdamW
107
+ save_best_checkpoint: false
108
+ schedule: Cosine
109
+ train_validation_data: false
110
+ use_flash_attention_2: true
111
+ warmup_epochs: 0.05
112
+ weight_decay: 0.0
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "h2oai/h2o-danube-1.8b-sft",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 2560,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 6912,
13
+ "max_position_embeddings": 16384,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 24,
17
+ "num_key_value_heads": 8,
18
+ "pad_token_id": 0,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "rope_theta": 10000.0,
23
+ "sliding_window": 4096,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.36.1",
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.36.1",
7
+ "repetition_penalty": 1.1
8
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d42f79f4c6e1a9379397d6ca51feedb4807f60527d069a86bd1c2534db1fdf02
3
+ size 3662427808
special_tokens_map.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": "</s>",
10
+ "eos_token": {
11
+ "content": "</s>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ },
17
+ "pad_token": "<unk>",
18
+ "sep_token": "</s>",
19
+ "unk_token": {
20
+ "content": "<unk>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ }
26
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{{ '<|prompt|>' + message['content'] + eos_token }}{% elif message['role'] == 'system' %}{{ '<|system|>' + message['content'] + eos_token }}{% elif message['role'] == 'assistant' %}{{ '<|answer|>' + message['content'] + eos_token }}{% endif %}{% if loop.last and add_generation_prompt %}{{ '<|answer|>' }}{% endif %}{% endfor %}",
32
+ "bos_token": "<s>",
33
+ "clean_up_tokenization_spaces": false,
34
+ "cls_token": "</s>",
35
+ "eos_token": "</s>",
36
+ "legacy": false,
37
+ "model_max_length": 1000000000000000019884624838656,
38
+ "pad_token": "<unk>",
39
+ "padding_side": "left",
40
+ "sep_token": "</s>",
41
+ "sp_model_kwargs": {},
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }