File size: 2,994 Bytes
44fa2c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
language:
- en
library_name: transformers
license: apache-2.0
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
thumbnail: >-
  https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
pipeline_tag: text-generation
quantized_by: h2oai
---

# h2o-danube3-500m-chat-GGUF
- Model creator: [H2O.ai](https://huggingface.co/h2oai)
- Original model: [h2oai/h2o-danube3-500m-chat](https://huggingface.co/h2oai/h2o-danube3-500m-chat)

## Description

This repo contains GGUF format model files for [h2o-danube3-500m-chat](https://huggingface.co/h2oai/h2o-danube3-500m-chat) quantized using [llama.cpp](https://github.com/ggerganov/llama.cpp/) framework.

Table below summarizes different quantized versions of [h2o-danube3-500m-chat](https://huggingface.co/h2oai/h2o-danube3-500m-chat). It shows the trade-off between size, speed and quality of the models.


| Name                             | Quant method                      | Model size | MT-Bench AVG | Perplexity | Tokens per second |
|:----------------------------------|:----------------------------------:|:----------:|:------------:|:------------:|:-------------------:|
| [h2o-danube3-500m-chat-F16.gguf](https://huggingface.co/h2oai/h2o-danube3-500m-chat-GGUF/blob/main/h2o-danube3-500m-chat-F16.gguf)   | F16                              |    1.03 GB   |     3.34     |    9.46    |       1870        |
| [h2o-danube3-500m-chat-Q8_0.gguf](https://huggingface.co/h2oai/h2o-danube3-500m-chat-GGUF/blob/main/h2o-danube3-500m-chat-Q8_0.gguf)   | Q8_0                              |    0.55 GB   |     3.76     |    9.46    |       2144        |
| [h2o-danube3-500m-chat-Q6_K.gguf](https://huggingface.co/h2oai/h2o-danube3-500m-chat-GGUF/blob/main/h2o-danube3-500m-chat-Q6_K.gguf)   | Q6_K                              |  0.42 GB   |     3.77     |    9.46    |       2418        |
| [h2o-danube3-500m-chat-Q5_K_M.gguf](https://huggingface.co/h2oai/h2o-danube3-500m-chat-GGUF/blob/main/h2o-danube3-500m-chat-Q5_K_M.gguf) | Q5_K_M                            |     0.37 GB   |     3.20     |    9.55    |       2430        |
| [h2o-danube3-500m-chat-Q4_K_M.gguf](https://huggingface.co/h2oai/h2o-danube3-500m-chat-GGUF/blob/main/h2o-danube3-500m-chat-Q4_K_M.gguf) | Q4_K_M |  0.32 GB   |     3.16     |    9.96    |       2427        |

Columns in the table are:
* Name -- model name and link
* Quant method -- quantization method
* Model size -- size of the model in gigabytes
* MT-Bench AVG -- [MT-Bench](https://arxiv.org/abs/2306.05685) benchmark score. The score is from 1 to 10, the higher, the better
* Perplexity -- perplexity metric on WikiText-2 dataset. It's reported in a perplexity test from llama.cpp. The lower, the better
* Tokens per second -- generation speed in tokens per second, as reported in a perplexity test from llama.cpp. The higher, the better. Speed tests are done on a single H100 GPU


## Prompt template
```
<|prompt|>Why is drinking water so healthy?</s><|answer|>
```