Update cfg.yaml
Browse files
cfg.yaml
CHANGED
@@ -28,7 +28,7 @@ dataset:
|
|
28 |
text_answer_separator: <|answer|>
|
29 |
text_prompt_start: <|prompt|>
|
30 |
train_dataframe: data/user/oasst/train_full_allrank.pq
|
31 |
-
validation_dataframe: data/user/oasst/
|
32 |
validation_size: 0.01
|
33 |
validation_strategy: custom
|
34 |
environment:
|
@@ -39,7 +39,7 @@ environment:
|
|
39 |
- '1'
|
40 |
- '2'
|
41 |
- '3'
|
42 |
-
huggingface_branch:
|
43 |
mixed_precision: true
|
44 |
number_of_workers: 8
|
45 |
seed: -1
|
@@ -47,10 +47,6 @@ environment:
|
|
47 |
use_fsdp: false
|
48 |
experiment_name: h2ogpt-gm-oasst1-en-xgen-7b-8k
|
49 |
llm_backbone: Salesforce/xgen-7b-8k-base
|
50 |
-
logging:
|
51 |
-
logger: Neptune
|
52 |
-
neptune_project: Zoo/h2o-llm
|
53 |
-
number_of_texts: 10
|
54 |
output_directory: output/user/h2ogpt-gm-oasst1-en-xgen-7b-8k/
|
55 |
prediction:
|
56 |
batch_size_inference: 0
|
@@ -105,7 +101,6 @@ training:
|
|
105 |
ppo_clip_value: 0.2
|
106 |
ppo_epochs: 4
|
107 |
ppo_generate_temperature: 1.0
|
108 |
-
reward_model: OpenAssistant/reward-model-deberta-v3-large-v2
|
109 |
save_best_checkpoint: false
|
110 |
scaling_factor_value_loss: 0.1
|
111 |
schedule: Cosine
|
|
|
28 |
text_answer_separator: <|answer|>
|
29 |
text_prompt_start: <|prompt|>
|
30 |
train_dataframe: data/user/oasst/train_full_allrank.pq
|
31 |
+
validation_dataframe: data/user/oasst/val.csv
|
32 |
validation_size: 0.01
|
33 |
validation_strategy: custom
|
34 |
environment:
|
|
|
39 |
- '1'
|
40 |
- '2'
|
41 |
- '3'
|
42 |
+
huggingface_branch: main
|
43 |
mixed_precision: true
|
44 |
number_of_workers: 8
|
45 |
seed: -1
|
|
|
47 |
use_fsdp: false
|
48 |
experiment_name: h2ogpt-gm-oasst1-en-xgen-7b-8k
|
49 |
llm_backbone: Salesforce/xgen-7b-8k-base
|
|
|
|
|
|
|
|
|
50 |
output_directory: output/user/h2ogpt-gm-oasst1-en-xgen-7b-8k/
|
51 |
prediction:
|
52 |
batch_size_inference: 0
|
|
|
101 |
ppo_clip_value: 0.2
|
102 |
ppo_epochs: 4
|
103 |
ppo_generate_temperature: 1.0
|
|
|
104 |
save_best_checkpoint: false
|
105 |
scaling_factor_value_loss: 0.1
|
106 |
schedule: Cosine
|