psinger commited on
Commit
84f3573
·
1 Parent(s): d5788ab

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -14
README.md CHANGED
@@ -22,9 +22,10 @@ This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmst
22
  To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed.
23
 
24
  ```bash
25
- pip install transformers==4.29.2
26
  pip install accelerate==0.20.3
27
  pip install torch==2.0.0
 
28
  ```
29
 
30
  ```python
@@ -32,7 +33,7 @@ import torch
32
  from transformers import pipeline
33
 
34
  generate_text = pipeline(
35
- model="psinger/h2ogpt-gm-oasst1-en-xgen-7b-8k",
36
  torch_dtype="auto",
37
  trust_remote_code=True,
38
  use_fast=True,
@@ -70,13 +71,13 @@ from h2oai_pipeline import H2OTextGenerationPipeline
70
  from transformers import AutoModelForCausalLM, AutoTokenizer
71
 
72
  tokenizer = AutoTokenizer.from_pretrained(
73
- "psinger/h2ogpt-gm-oasst1-en-xgen-7b-8k",
74
  use_fast=True,
75
  padding_side="left",
76
  trust_remote_code=True,
77
  )
78
  model = AutoModelForCausalLM.from_pretrained(
79
- "psinger/h2ogpt-gm-oasst1-en-xgen-7b-8k",
80
  torch_dtype="auto",
81
  device_map={"": "cuda:0"},
82
  trust_remote_code=True,
@@ -173,16 +174,6 @@ LlamaForCausalLM(
173
 
174
  This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
175
 
176
-
177
- ## Model Validation
178
-
179
- Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
180
-
181
- ```bash
182
- CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=psinger/h2ogpt-gm-oasst1-en-xgen-7b-8k --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log
183
- ```
184
-
185
-
186
  ## Disclaimer
187
 
188
  Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
 
22
  To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed.
23
 
24
  ```bash
25
+ pip install transformers==4.30.1
26
  pip install accelerate==0.20.3
27
  pip install torch==2.0.0
28
+ pip install tiktoken==0.4.0
29
  ```
30
 
31
  ```python
 
33
  from transformers import pipeline
34
 
35
  generate_text = pipeline(
36
+ model="h2oai/h2ogpt-gm-oasst1-en-xgen-7b-8k",
37
  torch_dtype="auto",
38
  trust_remote_code=True,
39
  use_fast=True,
 
71
  from transformers import AutoModelForCausalLM, AutoTokenizer
72
 
73
  tokenizer = AutoTokenizer.from_pretrained(
74
+ "h2oai/h2ogpt-gm-oasst1-en-xgen-7b-8k",
75
  use_fast=True,
76
  padding_side="left",
77
  trust_remote_code=True,
78
  )
79
  model = AutoModelForCausalLM.from_pretrained(
80
+ "h2oai/h2ogpt-gm-oasst1-en-xgen-7b-8k",
81
  torch_dtype="auto",
82
  device_map={"": "cuda:0"},
83
  trust_remote_code=True,
 
174
 
175
  This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
176
 
 
 
 
 
 
 
 
 
 
 
177
  ## Disclaimer
178
 
179
  Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.