Update README.md
Browse files
README.md
CHANGED
@@ -22,9 +22,10 @@ This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmst
|
|
22 |
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed.
|
23 |
|
24 |
```bash
|
25 |
-
pip install transformers==4.
|
26 |
pip install accelerate==0.20.3
|
27 |
pip install torch==2.0.0
|
|
|
28 |
```
|
29 |
|
30 |
```python
|
@@ -32,7 +33,7 @@ import torch
|
|
32 |
from transformers import pipeline
|
33 |
|
34 |
generate_text = pipeline(
|
35 |
-
model="
|
36 |
torch_dtype="auto",
|
37 |
trust_remote_code=True,
|
38 |
use_fast=True,
|
@@ -70,13 +71,13 @@ from h2oai_pipeline import H2OTextGenerationPipeline
|
|
70 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
71 |
|
72 |
tokenizer = AutoTokenizer.from_pretrained(
|
73 |
-
"
|
74 |
use_fast=True,
|
75 |
padding_side="left",
|
76 |
trust_remote_code=True,
|
77 |
)
|
78 |
model = AutoModelForCausalLM.from_pretrained(
|
79 |
-
"
|
80 |
torch_dtype="auto",
|
81 |
device_map={"": "cuda:0"},
|
82 |
trust_remote_code=True,
|
@@ -173,16 +174,6 @@ LlamaForCausalLM(
|
|
173 |
|
174 |
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
|
175 |
|
176 |
-
|
177 |
-
## Model Validation
|
178 |
-
|
179 |
-
Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
|
180 |
-
|
181 |
-
```bash
|
182 |
-
CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=psinger/h2ogpt-gm-oasst1-en-xgen-7b-8k --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log
|
183 |
-
```
|
184 |
-
|
185 |
-
|
186 |
## Disclaimer
|
187 |
|
188 |
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
|
|
|
22 |
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed.
|
23 |
|
24 |
```bash
|
25 |
+
pip install transformers==4.30.1
|
26 |
pip install accelerate==0.20.3
|
27 |
pip install torch==2.0.0
|
28 |
+
pip install tiktoken==0.4.0
|
29 |
```
|
30 |
|
31 |
```python
|
|
|
33 |
from transformers import pipeline
|
34 |
|
35 |
generate_text = pipeline(
|
36 |
+
model="h2oai/h2ogpt-gm-oasst1-en-xgen-7b-8k",
|
37 |
torch_dtype="auto",
|
38 |
trust_remote_code=True,
|
39 |
use_fast=True,
|
|
|
71 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
72 |
|
73 |
tokenizer = AutoTokenizer.from_pretrained(
|
74 |
+
"h2oai/h2ogpt-gm-oasst1-en-xgen-7b-8k",
|
75 |
use_fast=True,
|
76 |
padding_side="left",
|
77 |
trust_remote_code=True,
|
78 |
)
|
79 |
model = AutoModelForCausalLM.from_pretrained(
|
80 |
+
"h2oai/h2ogpt-gm-oasst1-en-xgen-7b-8k",
|
81 |
torch_dtype="auto",
|
82 |
device_map={"": "cuda:0"},
|
83 |
trust_remote_code=True,
|
|
|
174 |
|
175 |
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
## Disclaimer
|
178 |
|
179 |
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
|