File size: 1,563 Bytes
d01fb16 d5d0b9d d01fb16 d5d0b9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
from transformers import TextGenerationPipeline
from transformers.pipelines.text_generation import ReturnType
from stopping import get_stopping
prompt_type = "human_bot"
human = "<human>:"
bot = "<bot>:"
# human-bot interaction like OIG dataset
prompt = """{human} {instruction}
{bot}""".format(
human=human,
instruction="{instruction}",
bot=bot,
)
class H2OTextGenerationPipeline(TextGenerationPipeline):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def preprocess(self, prompt_text, prefix="", handle_long_generation=None, **generate_kwargs):
prompt_text = prompt.format(instruction=prompt_text)
return super().preprocess(prompt_text, prefix=prefix, handle_long_generation=handle_long_generation,
**generate_kwargs)
def postprocess(self, model_outputs, return_type=ReturnType.FULL_TEXT, clean_up_tokenization_spaces=True):
records = super().postprocess(model_outputs, return_type=return_type,
clean_up_tokenization_spaces=clean_up_tokenization_spaces)
for rec in records:
rec['generated_text'] = rec['generated_text'].split(bot)[1].strip().split(human)[0].strip()
return records
def _forward(self, model_inputs, **generate_kwargs):
stopping_criteria = get_stopping(prompt_type, self.tokenizer, self.device, human=human, bot=bot)
generate_kwargs['stopping_criteria'] = stopping_criteria
return super()._forward(model_inputs, **generate_kwargs)
|