arnocandel commited on
Commit
e23d484
·
1 Parent(s): d01fb16

commit files to HF hub

Browse files
Files changed (1) hide show
  1. README.md +121 -0
README.md CHANGED
@@ -1,3 +1,124 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ inference: false
7
+ thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
8
+ tags:
9
+ - gpt
10
+ - llm
11
+ - large language model
12
+ - open-source
13
+ datasets:
14
+ - h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1
15
  ---
16
+ # h2oGPT Model Card
17
+ ## Summary
18
+
19
+ H2O.ai's `h2ogpt-oig-oasst1-512-6.9b` is a 6.9 billion parameter instruction-following large language model licensed for commercial use.
20
+
21
+ - Base model: [EleutherAI/pythia-6.9b](https://huggingface.co/EleutherAI/pythia-6.9b)
22
+ - Fine-tuning dataset: [h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1](https://huggingface.co/datasets/h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1)
23
+ - Data-prep and fine-tuning code: [H2O.ai Github](https://github.com/h2oai/h2ogpt)
24
+ - Training logs: [zip](https://huggingface.co/h2oai/h2ogpt-oig-oasst1-512-6.9b/blob/main/pythia-6.9b.h2ogpt-oig-oasst1-instruct-cleaned-v1.json.1_epochs.5fc91911bc2bfaaf3b6c2de577c4b0ae45a07a4a.7.zip)
25
+
26
+ ## Usage
27
+
28
+ To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` and `accelerate` libraries installed.
29
+
30
+ ```bash
31
+ pip install transformers==4.28.1
32
+ pip install accelerate==0.18.0
33
+ ```
34
+
35
+ ```python
36
+ import torch
37
+ from transformers import pipeline
38
+
39
+ generate_text = pipeline(model="h2oai/h2ogpt-oig-oasst1-512-6.9b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
40
+
41
+ res = generate_text("Why is drinking water so healthy?", max_new_tokens=100)
42
+ print(res[0]["generated_text"])
43
+ ```
44
+
45
+ Alternatively, if you prefer to not use `trust_remote_code=True` you can download [instruct_pipeline.py](https://huggingface.co/h2oai/h2ogpt-oig-oasst1-512-6.9b/blob/main/h2oai_pipeline.py),
46
+ store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
47
+
48
+ ```python
49
+ import torch
50
+ from h2oai_pipeline import H2OTextGenerationPipeline
51
+ from transformers import AutoModelForCausalLM, AutoTokenizer
52
+
53
+ tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oig-oasst1-512-6.9b", padding_side="left")
54
+ model = AutoModelForCausalLM.from_pretrained("h2oai/h2ogpt-oig-oasst1-512-6.9b", torch_dtype=torch.bfloat16, device_map="auto")
55
+ generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
56
+
57
+ res = generate_text("Why is drinking water so healthy?", max_new_tokens=100)
58
+ print(res[0]["generated_text"])
59
+ ```
60
+
61
+ ## Model Architecture
62
+
63
+ ```
64
+ GPTNeoXForCausalLM(
65
+ (gpt_neox): GPTNeoXModel(
66
+ (embed_in): Embedding(50432, 4096)
67
+ (layers): ModuleList(
68
+ (0-31): 32 x GPTNeoXLayer(
69
+ (input_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
70
+ (post_attention_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
71
+ (attention): GPTNeoXAttention(
72
+ (rotary_emb): RotaryEmbedding()
73
+ (query_key_value): Linear(in_features=4096, out_features=12288, bias=True)
74
+ (dense): Linear(in_features=4096, out_features=4096, bias=True)
75
+ )
76
+ (mlp): GPTNeoXMLP(
77
+ (dense_h_to_4h): Linear(in_features=4096, out_features=16384, bias=True)
78
+ (dense_4h_to_h): Linear(in_features=16384, out_features=4096, bias=True)
79
+ (act): GELUActivation()
80
+ )
81
+ )
82
+ )
83
+ (final_layer_norm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
84
+ )
85
+ (embed_out): Linear(in_features=4096, out_features=50432, bias=False)
86
+ )
87
+ ```
88
+
89
+ ## Model Configuration
90
+
91
+ ```json
92
+ GPTNeoXConfig {
93
+ "_name_or_path": "h2oai/h2ogpt-oig-oasst1-512-6.9b",
94
+ "architectures": [
95
+ "GPTNeoXForCausalLM"
96
+ ],
97
+ "bos_token_id": 0,
98
+ "custom_pipeline": {
99
+ "text-generation": {
100
+ "impl": "h2oai_pipeline.H2OTextGenerationPipeline",
101
+ "pt": "AutoModelForCausalLM"
102
+ }
103
+ },
104
+ "eos_token_id": 0,
105
+ "hidden_act": "gelu",
106
+ "hidden_size": 4096,
107
+ "initializer_range": 0.02,
108
+ "intermediate_size": 16384,
109
+ "layer_norm_eps": 1e-05,
110
+ "max_position_embeddings": 2048,
111
+ "model_type": "gpt_neox",
112
+ "num_attention_heads": 32,
113
+ "num_hidden_layers": 32,
114
+ "rotary_emb_base": 10000,
115
+ "rotary_pct": 0.25,
116
+ "tie_word_embeddings": false,
117
+ "torch_dtype": "float16",
118
+ "transformers_version": "4.28.1",
119
+ "use_cache": true,
120
+ "use_parallel_residual": true,
121
+ "vocab_size": 50432
122
+ }
123
+
124
+ ```