arnocandel commited on
Commit
9662ed9
·
1 Parent(s): 8aed71e

Add exported state.

Browse files
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "decapoda-research/llama-65b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 0,
7
+ "custom_pipelines": {
8
+ "text-generation": {
9
+ "impl": "h2oai_pipeline.H2OTextGenerationPipeline",
10
+ "pt": "AutoModelForCausalLM"
11
+ }
12
+ },
13
+ "eos_token_id": 1,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 8192,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 22016,
18
+ "max_position_embeddings": 2048,
19
+ "max_sequence_length": 2048,
20
+ "model_type": "llama",
21
+ "num_attention_heads": 64,
22
+ "num_hidden_layers": 80,
23
+ "pad_token_id": -1,
24
+ "rms_norm_eps": 1e-05,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "float16",
27
+ "transformers_version": "4.30.1",
28
+ "use_cache": true,
29
+ "vocab_size": 32000
30
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.30.1"
7
+ }
h2oai_pipeline.py ADDED
@@ -0,0 +1,929 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from transformers import TextGenerationPipeline
4
+ from transformers.pipelines.text_generation import ReturnType
5
+
6
+
7
+
8
+
9
+
10
+ class H2OTextGenerationPipeline(TextGenerationPipeline):
11
+ def __init__(self, *args, debug=False, chat=False, stream_output=False,
12
+ sanitize_bot_response=False,
13
+ use_prompter=True, prompter=None,
14
+ prompt_type=None, prompt_dict=None,
15
+ max_input_tokens=2048 - 256, **kwargs):
16
+ """
17
+ HF-like pipeline, but handle instruction prompting and stopping (for some models)
18
+ :param args:
19
+ :param debug:
20
+ :param chat:
21
+ :param stream_output:
22
+ :param sanitize_bot_response:
23
+ :param use_prompter: Whether to use prompter. If pass prompt_type, will make prompter
24
+ :param prompter: prompter, can pass if have already
25
+ :param prompt_type: prompt_type, e.g. human_bot. See prompt_type to model mapping in
26
+ If use_prompter, then will make prompter and use it.
27
+ :param prompt_dict: dict of get_prompt(, return_dict=True) for prompt_type=custom
28
+ :param max_input_tokens:
29
+ :param kwargs:
30
+ """
31
+ super().__init__(*args, **kwargs)
32
+ self.prompt_text = None
33
+ self.use_prompter = use_prompter
34
+ self.prompt_type = prompt_type
35
+ self.prompt_dict = prompt_dict
36
+ self.prompter = prompter
37
+ if self.use_prompter:
38
+ if self.prompter is not None:
39
+ assert self.prompter.prompt_type is not None
40
+ else:
41
+ self.prompter = Prompter(self.prompt_type, self.prompt_dict, debug=debug, chat=chat,
42
+ stream_output=stream_output)
43
+ self.human = self.prompter.humanstr
44
+ self.bot = self.prompter.botstr
45
+ self.can_stop = True
46
+ else:
47
+ self.prompter = None
48
+ self.human = None
49
+ self.bot = None
50
+ self.can_stop = False
51
+ self.sanitize_bot_response = sanitize_bot_response
52
+ self.max_input_tokens = max_input_tokens # not for generate, so ok that not kwargs
53
+
54
+ @staticmethod
55
+ def limit_prompt(prompt_text, tokenizer, max_prompt_length=None):
56
+ verbose = bool(int(os.getenv('VERBOSE_PIPELINE', '0')))
57
+
58
+ if hasattr(tokenizer, 'model_max_length'):
59
+ # model_max_length only defined for generate.py, not raw use of h2oai_pipeline.py
60
+ model_max_length = tokenizer.model_max_length
61
+ if max_prompt_length is not None:
62
+ model_max_length = min(model_max_length, max_prompt_length)
63
+ # cut at some upper likely limit to avoid excessive tokenization etc
64
+ # upper bound of 10 chars/token, e.g. special chars sometimes are long
65
+ if len(prompt_text) > model_max_length * 10:
66
+ len0 = len(prompt_text)
67
+ prompt_text = prompt_text[-model_max_length * 10:]
68
+ if verbose:
69
+ print("Cut of input: %s -> %s" % (len0, len(prompt_text)), flush=True)
70
+ else:
71
+ # unknown
72
+ model_max_length = None
73
+
74
+ if model_max_length is not None:
75
+ num_prompt_tokens = None
76
+ # can't wait for "hole" if not plain prompt_type, since would lose prefix like <human>:
77
+ # For https://github.com/h2oai/h2ogpt/issues/192
78
+ for trial in range(0, 3):
79
+ prompt_tokens = tokenizer(prompt_text)['input_ids']
80
+ num_prompt_tokens = len(prompt_tokens)
81
+ if num_prompt_tokens > model_max_length:
82
+ # conservative by using int()
83
+ chars_per_token = int(len(prompt_text) / num_prompt_tokens)
84
+ # keep tail, where question is if using langchain
85
+ prompt_text = prompt_text[-model_max_length * chars_per_token:]
86
+ if verbose:
87
+ print("reducing %s tokens, assuming average of %s chars/token for %s characters" % (
88
+ num_prompt_tokens, chars_per_token, len(prompt_text)), flush=True)
89
+ else:
90
+ if verbose:
91
+ print("using %s tokens with %s chars" % (num_prompt_tokens, len(prompt_text)), flush=True)
92
+ break
93
+
94
+ # Why Below False: don't limit max_new_tokens more, just rely upon stopping to reach limit of model
95
+ if False:
96
+ # if input prompt is some number of tokens, despite user request, can't have max_new_tokens more
97
+ #
98
+ assert num_prompt_tokens is not None
99
+ if self.prompt_type not in [PromptType.plain.name, PromptType.plain.value]:
100
+ # then give room for prompt
101
+ fudge = 20
102
+ else:
103
+ fudge = 0
104
+ max_new_tokens = max(0, min(generate_kwargs['max_new_tokens'],
105
+ model_max_length - (num_prompt_tokens + fudge)))
106
+ if max_new_tokens < generate_kwargs['max_new_tokens']:
107
+ if verbose:
108
+ print("Reduced max_new_tokens from %s -> %s" % (
109
+ generate_kwargs['max_new_tokens'], max_new_tokens))
110
+ generate_kwargs['max_new_tokens'] = max_new_tokens
111
+ return prompt_text
112
+
113
+ def preprocess(self, prompt_text, prefix="", handle_long_generation=None, **generate_kwargs):
114
+ prompt_text = H2OTextGenerationPipeline.limit_prompt(prompt_text, self.tokenizer)
115
+
116
+ data_point = dict(context='', instruction=prompt_text, input='')
117
+ if self.prompter is not None:
118
+ prompt_text = self.prompter.generate_prompt(data_point)
119
+ self.prompt_text = prompt_text
120
+ if handle_long_generation is None:
121
+ # forces truncation of inputs to avoid critical failure
122
+ handle_long_generation = None # disable with new approaches
123
+ return super().preprocess(prompt_text, prefix=prefix, handle_long_generation=handle_long_generation,
124
+ **generate_kwargs)
125
+
126
+ def postprocess(self, model_outputs, return_type=ReturnType.FULL_TEXT, clean_up_tokenization_spaces=True):
127
+ records = super().postprocess(model_outputs, return_type=return_type,
128
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces)
129
+ for rec in records:
130
+ if self.use_prompter:
131
+ outputs = rec['generated_text']
132
+ outputs = self.prompter.get_response(outputs, prompt=self.prompt_text,
133
+ sanitize_bot_response=self.sanitize_bot_response)
134
+ elif self.bot and self.human:
135
+ outputs = rec['generated_text'].split(self.bot)[1].strip().split(self.human)[0].strip()
136
+ else:
137
+ outputs = rec['generated_text']
138
+ rec['generated_text'] = outputs
139
+ return records
140
+
141
+ def _forward(self, model_inputs, **generate_kwargs):
142
+ if self.can_stop:
143
+ stopping_criteria = get_stopping(self.prompt_type, self.prompt_dict,
144
+ self.tokenizer, self.device,
145
+ human=self.human, bot=self.bot,
146
+ model_max_length=self.tokenizer.model_max_length)
147
+ generate_kwargs['stopping_criteria'] = stopping_criteria
148
+ # return super()._forward(model_inputs, **generate_kwargs)
149
+ return self.__forward(model_inputs, **generate_kwargs)
150
+
151
+ # FIXME: Copy-paste of original _forward, but removed copy.deepcopy()
152
+ # FIXME: https://github.com/h2oai/h2ogpt/issues/172
153
+ def __forward(self, model_inputs, **generate_kwargs):
154
+ input_ids = model_inputs["input_ids"]
155
+ attention_mask = model_inputs.get("attention_mask", None)
156
+ # Allow empty prompts
157
+ if input_ids.shape[1] == 0:
158
+ input_ids = None
159
+ attention_mask = None
160
+ in_b = 1
161
+ else:
162
+ in_b = input_ids.shape[0]
163
+ prompt_text = model_inputs.pop("prompt_text")
164
+
165
+ ## If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
166
+ ## generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
167
+ # generate_kwargs = copy.deepcopy(generate_kwargs)
168
+ prefix_length = generate_kwargs.pop("prefix_length", 0)
169
+ if prefix_length > 0:
170
+ has_max_new_tokens = "max_new_tokens" in generate_kwargs or (
171
+ "generation_config" in generate_kwargs
172
+ and generate_kwargs["generation_config"].max_new_tokens is not None
173
+ )
174
+ if not has_max_new_tokens:
175
+ generate_kwargs["max_length"] = generate_kwargs.get("max_length") or self.model.config.max_length
176
+ generate_kwargs["max_length"] += prefix_length
177
+ has_min_new_tokens = "min_new_tokens" in generate_kwargs or (
178
+ "generation_config" in generate_kwargs
179
+ and generate_kwargs["generation_config"].min_new_tokens is not None
180
+ )
181
+ if not has_min_new_tokens and "min_length" in generate_kwargs:
182
+ generate_kwargs["min_length"] += prefix_length
183
+
184
+ # BS x SL
185
+ generated_sequence = self.model.generate(input_ids=input_ids, attention_mask=attention_mask, **generate_kwargs)
186
+ out_b = generated_sequence.shape[0]
187
+ if self.framework == "pt":
188
+ generated_sequence = generated_sequence.reshape(in_b, out_b // in_b, *generated_sequence.shape[1:])
189
+ elif self.framework == "tf":
190
+ from transformers import is_tf_available
191
+ if is_tf_available():
192
+ import tensorflow as tf
193
+ generated_sequence = tf.reshape(generated_sequence,
194
+ (in_b, out_b // in_b, *generated_sequence.shape[1:]))
195
+ else:
196
+ raise ValueError("TF not avaialble.")
197
+ return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
198
+ import torch
199
+ from transformers import StoppingCriteria, StoppingCriteriaList
200
+
201
+
202
+
203
+ class StoppingCriteriaSub(StoppingCriteria):
204
+
205
+ def __init__(self, stops=[], encounters=[], device="cuda", model_max_length=None):
206
+ super().__init__()
207
+ assert len(stops) % len(encounters) == 0, "Number of stops and encounters must match"
208
+ self.encounters = encounters
209
+ self.stops = [stop.to(device) for stop in stops]
210
+ self.num_stops = [0] * len(stops)
211
+ self.model_max_length = model_max_length
212
+
213
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
214
+ for stopi, stop in enumerate(self.stops):
215
+ if torch.all((stop == input_ids[0][-len(stop):])).item():
216
+ self.num_stops[stopi] += 1
217
+ if self.num_stops[stopi] >= self.encounters[stopi % len(self.encounters)]:
218
+ # print("Stopped", flush=True)
219
+ return True
220
+ if self.model_max_length is not None and input_ids[0].shape[0] >= self.model_max_length:
221
+ # critical limit
222
+ return True
223
+ # print("Tokens: %s" % input_ids[0].cpu().numpy(), flush=True)
224
+ # print("Stop Tokens: %s" % [x.cpu().numpy() for x in self.stops], flush=True)
225
+ return False
226
+
227
+
228
+ def get_stopping(prompt_type, prompt_dict, tokenizer, device, human='<human>:', bot="<bot>:", model_max_length=None):
229
+ # FIXME: prompt_dict unused currently
230
+ if prompt_type in [PromptType.human_bot.name, PromptType.instruct_vicuna.name, PromptType.instruct_with_end.name]:
231
+ if prompt_type == PromptType.human_bot.name:
232
+ # encounters = [prompt.count(human) + 1, prompt.count(bot) + 1]
233
+ # stopping only starts once output is beyond prompt
234
+ # 1 human is enough to trigger, but need 2 bots, because very first view back will be bot we added
235
+ stop_words = [human, bot, '\n' + human, '\n' + bot]
236
+ encounters = [1, 2]
237
+ elif prompt_type == PromptType.instruct_vicuna.name:
238
+ # even below is not enough, generic strings and many ways to encode
239
+ stop_words = [
240
+ '### Human:',
241
+ """
242
+ ### Human:""",
243
+ """
244
+ ### Human:
245
+ """,
246
+ '### Assistant:',
247
+ """
248
+ ### Assistant:""",
249
+ """
250
+ ### Assistant:
251
+ """,
252
+ ]
253
+ encounters = [1, 2]
254
+ else:
255
+ # some instruct prompts have this as end, doesn't hurt to stop on it since not common otherwise
256
+ stop_words = ['### End']
257
+ encounters = [1]
258
+ stop_words_ids = [
259
+ tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
260
+ # handle single token case
261
+ stop_words_ids = [x if len(x.shape) > 0 else torch.tensor([x]) for x in stop_words_ids]
262
+ stop_words_ids = [x for x in stop_words_ids if x.shape[0] > 0]
263
+ # avoid padding in front of tokens
264
+ if tokenizer._pad_token: # use hidden variable to avoid annoying properly logger bug
265
+ stop_words_ids = [x[1:] if x[0] == tokenizer.pad_token_id and len(x) > 1 else x for x in stop_words_ids]
266
+ # handle fake \n added
267
+ stop_words_ids = [x[1:] if y[0] == '\n' else x for x, y in zip(stop_words_ids, stop_words)]
268
+ # build stopper
269
+ stopping_criteria = StoppingCriteriaList(
270
+ [StoppingCriteriaSub(stops=stop_words_ids, encounters=encounters, device=device,
271
+ model_max_length=model_max_length)])
272
+ else:
273
+ stopping_criteria = StoppingCriteriaList()
274
+ return stopping_criteria
275
+ from enum import Enum
276
+
277
+
278
+ class PromptType(Enum):
279
+ custom = -1
280
+ plain = 0
281
+ instruct = 1
282
+ quality = 2
283
+ human_bot = 3
284
+ dai_faq = 4
285
+ summarize = 5
286
+ simple_instruct = 6
287
+ instruct_vicuna = 7
288
+ instruct_with_end = 8
289
+ human_bot_orig = 9
290
+ prompt_answer = 10
291
+ open_assistant = 11
292
+ wizard_lm = 12
293
+ wizard_mega = 13
294
+ instruct_vicuna2 = 14
295
+ instruct_vicuna3 = 15
296
+ wizard2 = 16
297
+ wizard3 = 17
298
+ instruct_simple = 18
299
+
300
+
301
+ class DocumentChoices(Enum):
302
+ All_Relevant = 0
303
+ All_Relevant_Only_Sources = 1
304
+ Only_All_Sources = 2
305
+ Just_LLM = 3
306
+
307
+
308
+ class LangChainMode(Enum):
309
+ """LangChain mode"""
310
+
311
+ DISABLED = "Disabled"
312
+ CHAT_LLM = "ChatLLM"
313
+ LLM = "LLM"
314
+ ALL = "All"
315
+ WIKI = "wiki"
316
+ WIKI_FULL = "wiki_full"
317
+ USER_DATA = "UserData"
318
+ MY_DATA = "MyData"
319
+ GITHUB_H2OGPT = "github h2oGPT"
320
+ H2O_DAI_DOCS = "DriverlessAI docs"
321
+ import ast
322
+ import time
323
+ from enums import PromptType # also supports imports from this file from other files
324
+
325
+ non_hf_types = ['gpt4all_llama', 'llama', 'gptj']
326
+
327
+ prompt_type_to_model_name = {
328
+ 'plain': [
329
+ 'EleutherAI/gpt-j-6B',
330
+ 'EleutherAI/pythia-6.9b',
331
+ 'EleutherAI/pythia-12b',
332
+ 'EleutherAI/pythia-12b-deduped',
333
+ 'EleutherAI/gpt-neox-20b',
334
+ 'openlm-research/open_llama_7b_700bt_preview',
335
+ 'decapoda-research/llama-7b-hf',
336
+ 'decapoda-research/llama-13b-hf',
337
+ 'decapoda-research/llama-30b-hf',
338
+ 'decapoda-research/llama-65b-hf',
339
+ 'facebook/mbart-large-50-many-to-many-mmt',
340
+ 'philschmid/bart-large-cnn-samsum',
341
+ 'philschmid/flan-t5-base-samsum',
342
+ 'gpt2',
343
+ 'distilgpt2',
344
+ 'mosaicml/mpt-7b-storywriter',
345
+ 'mosaicml/mpt-7b-instruct', # internal code handles instruct
346
+ 'mosaicml/mpt-7b-chat', # NC, internal code handles instruct
347
+ 'gptj', # internally handles prompting
348
+ 'llama', # plain, or need to choose prompt_type for given TheBloke model
349
+ 'gpt4all_llama', # internally handles prompting
350
+ ],
351
+ 'prompt_answer': [
352
+ 'h2oai/h2ogpt-gm-oasst1-en-1024-20b',
353
+ 'h2oai/h2ogpt-gm-oasst1-en-1024-12b',
354
+ 'h2oai/h2ogpt-gm-oasst1-multilang-1024-20b',
355
+ 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt',
356
+ 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2',
357
+ 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-700bt',
358
+ 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b',
359
+ 'h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b',
360
+ 'h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b-v2',
361
+ 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b',
362
+ 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2',
363
+ 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1',
364
+ ],
365
+ 'instruct': [],
366
+ 'instruct_with_end': ['databricks/dolly-v2-12b'],
367
+ 'quality': [],
368
+ 'human_bot': [
369
+ 'h2oai/h2ogpt-oasst1-512-12b',
370
+ 'h2oai/h2ogpt-oasst1-512-20b',
371
+ 'h2oai/h2ogpt-oig-oasst1-256-6_9b',
372
+ 'h2oai/h2ogpt-oig-oasst1-512-6_9b',
373
+ 'h2oai/h2ogpt-oig-oasst1-256-6.9b', # legacy
374
+ 'h2oai/h2ogpt-oig-oasst1-512-6.9b', # legacy
375
+ 'h2oai/h2ogpt-research-oasst1-512-30b',
376
+ 'h2oai/h2ogpt-oasst1-falcon-40b',
377
+ 'h2oai/h2ogpt-oig-oasst1-falcon-40b',
378
+ ],
379
+ 'dai_faq': [],
380
+ 'summarize': [],
381
+ 'simple_instruct': ['t5-small', 't5-large', 'google/flan-t5', 'google/flan-t5-xxl', 'google/flan-ul2'],
382
+ 'instruct_vicuna': ['AlekseyKorshuk/vicuna-7b', 'TheBloke/stable-vicuna-13B-HF', 'junelee/wizard-vicuna-13b'],
383
+ 'human_bot_orig': ['togethercomputer/GPT-NeoXT-Chat-Base-20B'],
384
+ "open_assistant": ['OpenAssistant/oasst-sft-7-llama-30b-xor', 'oasst-sft-7-llama-30b'],
385
+ "wizard_lm": ['ehartford/WizardLM-7B-Uncensored', 'ehartford/WizardLM-13B-Uncensored'],
386
+ "wizard_mega": ['openaccess-ai-collective/wizard-mega-13b'],
387
+ "instruct_simple": ['JosephusCheung/Guanaco'],
388
+ }
389
+
390
+ inv_prompt_type_to_model_name = {v.strip(): k for k, l in prompt_type_to_model_name.items() for v in l}
391
+ inv_prompt_type_to_model_lower = {v.strip().lower(): k for k, l in prompt_type_to_model_name.items() for v in l}
392
+
393
+ prompt_types_strings = []
394
+ for p in PromptType:
395
+ prompt_types_strings.extend([p.name])
396
+
397
+ prompt_types = []
398
+ for p in PromptType:
399
+ prompt_types.extend([p.name, p.value, str(p.value)])
400
+
401
+
402
+ def get_prompt(prompt_type, prompt_dict, chat, context, reduced, return_dict=False):
403
+ prompt_dict_error = ''
404
+ if prompt_type == PromptType.custom.name and not isinstance(prompt_dict, dict):
405
+ try:
406
+ prompt_dict = ast.literal_eval(prompt_dict)
407
+ except BaseException as e:
408
+ prompt_dict_error = str(e)
409
+ if prompt_dict_error:
410
+ return dict(), prompt_dict_error
411
+
412
+ if prompt_type in [PromptType.custom.value, str(PromptType.custom.value),
413
+ PromptType.custom.name]:
414
+ promptA = prompt_dict.get('promptA', '')
415
+ promptB = prompt_dict('promptB', '')
416
+ PreInstruct = prompt_dict.get('PreInstruct', '')
417
+ PreInput = prompt_dict.get('PreInput', '')
418
+ PreResponse = prompt_dict.get('PreResponse', '')
419
+ terminate_response = prompt_dict.get('terminate_response', None)
420
+ chat_sep = prompt_dict.get('chat_sep', '\n')
421
+ humanstr = prompt_dict.get('humanstr', '')
422
+ botstr = prompt_dict.get('botstr', '')
423
+ elif prompt_type in [PromptType.plain.value, str(PromptType.plain.value),
424
+ PromptType.plain.name]:
425
+ promptA = promptB = PreInstruct = PreInput = PreResponse = ''
426
+ terminate_response = []
427
+ chat_sep = ''
428
+ humanstr = ''
429
+ botstr = ''
430
+ elif prompt_type == 'simple_instruct':
431
+ promptA = promptB = PreInstruct = PreInput = PreResponse = None
432
+ terminate_response = []
433
+ chat_sep = '\n'
434
+ humanstr = ''
435
+ botstr = ''
436
+ elif prompt_type in [PromptType.instruct.value, str(PromptType.instruct.value),
437
+ PromptType.instruct.name] + [PromptType.instruct_with_end.value,
438
+ str(PromptType.instruct_with_end.value),
439
+ PromptType.instruct_with_end.name]:
440
+ promptA = 'Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n' if not (
441
+ chat and reduced) else ''
442
+ promptB = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.\n' if not (
443
+ chat and reduced) else ''
444
+
445
+ PreInstruct = """
446
+ ### Instruction:
447
+ """
448
+
449
+ PreInput = """
450
+ ### Input:
451
+ """
452
+
453
+ PreResponse = """
454
+ ### Response:
455
+ """
456
+ if prompt_type in [PromptType.instruct_with_end.value, str(PromptType.instruct_with_end.value),
457
+ PromptType.instruct_with_end.name]:
458
+ terminate_response = ['### End']
459
+ else:
460
+ terminate_response = None
461
+ chat_sep = '\n'
462
+ humanstr = PreInstruct
463
+ botstr = PreResponse
464
+ elif prompt_type in [PromptType.quality.value, str(PromptType.quality.value),
465
+ PromptType.quality.name]:
466
+ promptA = 'Write a detailed high-quality, accurate, fair, Response with about 100 words by following the Instruction as applied on the Input.\n' if not (
467
+ chat and reduced) else ''
468
+ promptB = 'Write a detailed high-quality, accurate, fair, Response with about 100 words by following the Instruction.\n' if not (
469
+ chat and reduced) else ''
470
+
471
+ PreInstruct = """
472
+ ### Instruction:
473
+ """
474
+
475
+ PreInput = """
476
+ ### Input:
477
+ """
478
+
479
+ PreResponse = """
480
+ ### Response:
481
+ """
482
+ terminate_response = None
483
+ chat_sep = '\n'
484
+ humanstr = PreInstruct # first thing human says
485
+ botstr = PreResponse # first thing bot says
486
+ elif prompt_type in [PromptType.human_bot.value, str(PromptType.human_bot.value),
487
+ PromptType.human_bot.name] + [PromptType.human_bot_orig.value,
488
+ str(PromptType.human_bot_orig.value),
489
+ PromptType.human_bot_orig.name]:
490
+ human = '<human>:'
491
+ bot = "<bot>:"
492
+ if reduced or context or prompt_type in [PromptType.human_bot.value, str(PromptType.human_bot.value),
493
+ PromptType.human_bot.name]:
494
+ preprompt = ''
495
+ else:
496
+ cur_date = time.strftime('%Y-%m-%d')
497
+ cur_time = time.strftime('%H:%M:%S %p %Z')
498
+
499
+ PRE_PROMPT = """\
500
+ Current Date: {}
501
+ Current Time: {}
502
+
503
+ """
504
+ preprompt = PRE_PROMPT.format(cur_date, cur_time)
505
+ start = human
506
+ promptB = promptA = '%s%s ' % (preprompt, start)
507
+
508
+ PreInstruct = ""
509
+
510
+ PreInput = None
511
+
512
+ if reduced:
513
+ # when making context, want it to appear as-if LLM generated, which starts with space after :
514
+ PreResponse = bot + ' '
515
+ else:
516
+ # normally LLM adds space after this, because was how trained.
517
+ # if add space here, non-unique tokenization will often make LLM produce wrong output
518
+ PreResponse = bot
519
+
520
+ terminate_response = [start, PreResponse]
521
+ chat_sep = '\n'
522
+ humanstr = human # tag before human talks
523
+ botstr = bot # tag before bot talks
524
+ elif prompt_type in [PromptType.dai_faq.value, str(PromptType.dai_faq.value),
525
+ PromptType.dai_faq.name]:
526
+ promptA = ''
527
+ promptB = 'Answer the following Driverless AI question.\n'
528
+
529
+ PreInstruct = """
530
+ ### Driverless AI frequently asked question:
531
+ """
532
+
533
+ PreInput = None
534
+
535
+ PreResponse = """
536
+ ### Driverless AI documentation answer:
537
+ """
538
+ terminate_response = ['\n\n']
539
+ chat_sep = terminate_response
540
+ humanstr = PreInstruct
541
+ botstr = PreResponse
542
+ elif prompt_type in [PromptType.summarize.value, str(PromptType.summarize.value),
543
+ PromptType.summarize.name]:
544
+ promptA = promptB = PreInput = ''
545
+ PreInstruct = '## Main Text\n\n'
546
+ PreResponse = '\n\n## Summary\n\n'
547
+ terminate_response = None
548
+ chat_sep = '\n'
549
+ humanstr = PreInstruct
550
+ botstr = PreResponse
551
+ elif prompt_type in [PromptType.instruct_vicuna.value, str(PromptType.instruct_vicuna.value),
552
+ PromptType.instruct_vicuna.name]:
553
+ promptA = promptB = "A chat between a curious human and an artificial intelligence assistant. " \
554
+ "The assistant gives helpful, detailed, and polite answers to the human's questions." if not (
555
+ chat and reduced) else ''
556
+
557
+ PreInstruct = """
558
+ ### Human:
559
+ """
560
+
561
+ PreInput = None
562
+
563
+ PreResponse = """
564
+ ### Assistant:
565
+ """
566
+ terminate_response = [
567
+ '### Human:'] # but only allow terminate after prompt is found correctly, else can't terminate
568
+ chat_sep = '\n'
569
+ humanstr = PreInstruct
570
+ botstr = PreResponse
571
+ elif prompt_type in [PromptType.prompt_answer.value, str(PromptType.prompt_answer.value),
572
+ PromptType.prompt_answer.name]:
573
+ preprompt = ''
574
+ prompt_tokens = "<|prompt|>"
575
+ answer_tokens = "<|answer|>"
576
+ start = prompt_tokens
577
+ promptB = promptA = '%s%s' % (preprompt, start)
578
+ PreInstruct = ""
579
+ PreInput = None
580
+ PreResponse = answer_tokens
581
+ eos = '<|endoftext|>' # neox eos
582
+ terminate_response = [start, PreResponse, eos]
583
+ chat_sep = eos
584
+ humanstr = prompt_tokens
585
+ botstr = answer_tokens
586
+ elif prompt_type in [PromptType.open_assistant.value, str(PromptType.open_assistant.value),
587
+ PromptType.open_assistant.name]:
588
+ # From added_tokens.json
589
+ preprompt = ''
590
+ prompt_tokens = "<|prompter|>"
591
+ answer_tokens = "<|assistant|>"
592
+ start = prompt_tokens
593
+ promptB = promptA = '%s%s' % (preprompt, start)
594
+ PreInstruct = ""
595
+ PreInput = None
596
+ PreResponse = answer_tokens
597
+ pend = "<|prefix_end|>"
598
+ eos = "</s>"
599
+ terminate_response = [start, PreResponse, pend, eos]
600
+ chat_sep = eos
601
+ humanstr = prompt_tokens
602
+ botstr = answer_tokens
603
+ elif prompt_type in [PromptType.wizard_lm.value, str(PromptType.wizard_lm.value),
604
+ PromptType.wizard_lm.name]:
605
+ # https://github.com/ehartford/WizardLM/blob/main/src/train_freeform.py
606
+ preprompt = ''
607
+ start = ''
608
+ promptB = promptA = '%s%s' % (preprompt, start)
609
+ PreInstruct = ""
610
+ PreInput = None
611
+ PreResponse = "\n\n### Response\n"
612
+ eos = "</s>"
613
+ terminate_response = [PreResponse, eos]
614
+ chat_sep = eos
615
+ humanstr = promptA
616
+ botstr = PreResponse
617
+ elif prompt_type in [PromptType.wizard_mega.value, str(PromptType.wizard_mega.value),
618
+ PromptType.wizard_mega.name]:
619
+ preprompt = ''
620
+ start = ''
621
+ promptB = promptA = '%s%s' % (preprompt, start)
622
+ PreInstruct = """
623
+ ### Instruction:
624
+ """
625
+ PreInput = None
626
+ PreResponse = """
627
+ ### Assistant:
628
+ """
629
+ terminate_response = [PreResponse]
630
+ chat_sep = '\n'
631
+ humanstr = PreInstruct
632
+ botstr = PreResponse
633
+ elif prompt_type in [PromptType.instruct_vicuna2.value, str(PromptType.instruct_vicuna2.value),
634
+ PromptType.instruct_vicuna2.name]:
635
+ promptA = promptB = "" if not (
636
+ chat and reduced) else ''
637
+
638
+ PreInstruct = """
639
+ HUMAN:
640
+ """
641
+
642
+ PreInput = None
643
+
644
+ PreResponse = """
645
+ ASSISTANT:
646
+ """
647
+ terminate_response = [
648
+ 'HUMAN:'] # but only allow terminate after prompt is found correctly, else can't terminate
649
+ chat_sep = '\n'
650
+ humanstr = PreInstruct
651
+ botstr = PreResponse
652
+ elif prompt_type in [PromptType.instruct_vicuna3.value, str(PromptType.instruct_vicuna3.value),
653
+ PromptType.instruct_vicuna3.name]:
654
+ promptA = promptB = "" if not (
655
+ chat and reduced) else ''
656
+
657
+ PreInstruct = """
658
+ ### User:
659
+ """
660
+
661
+ PreInput = None
662
+
663
+ PreResponse = """
664
+ ### Assistant:
665
+ """
666
+ terminate_response = [
667
+ '### User:'] # but only allow terminate after prompt is found correctly, else can't terminate
668
+ chat_sep = '\n'
669
+ humanstr = PreInstruct
670
+ botstr = PreResponse
671
+ elif prompt_type in [PromptType.wizard2.value, str(PromptType.wizard2.value),
672
+ PromptType.wizard2.name]:
673
+ # https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GGML
674
+ preprompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request."""
675
+ start = ''
676
+ promptB = promptA = '%s%s' % (preprompt, start)
677
+ PreInstruct = """
678
+ ### Instruction:
679
+ """
680
+ PreInput = None
681
+ PreResponse = """
682
+ ### Response:
683
+ """
684
+ terminate_response = [PreResponse]
685
+ chat_sep = '\n'
686
+ humanstr = PreInstruct
687
+ botstr = PreResponse
688
+ elif prompt_type in [PromptType.wizard3.value, str(PromptType.wizard3.value),
689
+ PromptType.wizard3.name]:
690
+ # https://huggingface.co/TheBloke/wizardLM-13B-1.0-GGML
691
+ preprompt = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."""
692
+ start = ''
693
+ promptB = promptA = '%s%s' % (preprompt, start)
694
+ PreInstruct = """USER: """
695
+ PreInput = None
696
+ PreResponse = """ASSISTANT: """
697
+ terminate_response = [PreResponse]
698
+ chat_sep = '\n'
699
+ humanstr = PreInstruct
700
+ botstr = PreResponse
701
+
702
+ elif prompt_type in [PromptType.instruct_simple.value, str(PromptType.instruct_simple.value),
703
+ PromptType.instruct_simple.name]:
704
+ promptA = '' if not (chat and reduced) else ''
705
+ promptB = '' if not (chat and reduced) else ''
706
+
707
+ PreInstruct = """
708
+ ### Instruction:
709
+ """
710
+
711
+ PreInput = """
712
+ ### Input:
713
+ """
714
+
715
+ PreResponse = """
716
+ ### Response:
717
+ """
718
+ terminate_response = None
719
+ chat_sep = '\n'
720
+ humanstr = PreInstruct
721
+ botstr = PreResponse
722
+ else:
723
+ raise RuntimeError("No such prompt_type=%s" % prompt_type)
724
+
725
+ if return_dict:
726
+ return dict(promptA=promptA, promptB=promptB, PreInstruct=PreInstruct, PreInput=PreInput,
727
+ PreResponse=PreResponse, terminate_response=terminate_response, chat_sep=chat_sep,
728
+ humanstr=humanstr, botstr=botstr), ''
729
+ else:
730
+ return promptA, promptB, PreInstruct, PreInput, PreResponse, terminate_response, chat_sep, humanstr, botstr
731
+
732
+
733
+ def generate_prompt(data_point, prompt_type, prompt_dict, chat, reduced):
734
+ context = data_point.get('context')
735
+ if context is None:
736
+ context = ''
737
+ instruction = data_point.get('instruction')
738
+ input = data_point.get('input')
739
+ output = data_point.get('output')
740
+ prompt_type = data_point.get('prompt_type', prompt_type)
741
+ prompt_dict = data_point.get('prompt_dict', prompt_dict)
742
+ assert prompt_type in prompt_types, "Bad prompt type: %s" % prompt_type
743
+ promptA, promptB, PreInstruct, PreInput, PreResponse, \
744
+ terminate_response, chat_sep, humanstr, botstr = get_prompt(prompt_type, prompt_dict, chat, context, reduced)
745
+
746
+ prompt = context if not reduced else ''
747
+
748
+ if input and promptA:
749
+ prompt += f"""{promptA}"""
750
+ elif promptB:
751
+ prompt += f"""{promptB}"""
752
+
753
+ if instruction and PreInstruct is not None and input and PreInput is not None:
754
+ prompt += f"""{PreInstruct}{instruction}{PreInput}{input}"""
755
+ prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
756
+ elif instruction and input and PreInstruct is None and PreInput is not None:
757
+ prompt += f"""{PreInput}{instruction}
758
+ {input}"""
759
+ prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
760
+ elif input and instruction and PreInput is None and PreInstruct is not None:
761
+ prompt += f"""{PreInstruct}{instruction}
762
+ {input}"""
763
+ prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
764
+ elif instruction and PreInstruct is not None:
765
+ prompt += f"""{PreInstruct}{instruction}"""
766
+ prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
767
+ elif input and PreInput is not None:
768
+ prompt += f"""{PreInput}{input}"""
769
+ prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
770
+ elif input and instruction and PreInput is not None:
771
+ prompt += f"""{PreInput}{instruction}{input}"""
772
+ prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
773
+ elif input and instruction and PreInstruct is not None:
774
+ prompt += f"""{PreInstruct}{instruction}{input}"""
775
+ prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
776
+ elif input and instruction:
777
+ # i.e. for simple_instruct
778
+ prompt += f"""{instruction}: {input}"""
779
+ prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
780
+ elif input:
781
+ prompt += f"""{input}"""
782
+ prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
783
+ elif instruction:
784
+ prompt += f"""{instruction}"""
785
+ prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
786
+
787
+ if PreResponse is not None:
788
+ prompt += f"""{PreResponse}"""
789
+ pre_response = PreResponse # Don't use strip
790
+ else:
791
+ pre_response = ''
792
+
793
+ if output:
794
+ prompt += f"""{output}"""
795
+
796
+ return prompt, pre_response, terminate_response, chat_sep
797
+
798
+
799
+ def inject_chatsep(prompt_type, prompt, chat_sep=None):
800
+ if chat_sep:
801
+ # only add new line if structured prompt, while 'plain' is just generation of next tokens from input
802
+ prompt += chat_sep
803
+ return prompt
804
+
805
+
806
+ class Prompter(object):
807
+ def __init__(self, prompt_type, prompt_dict, debug=False, chat=False, stream_output=False, repeat_penalty=True,
808
+ allowed_repeat_line_length=10):
809
+ self.prompt_type = prompt_type
810
+ self.prompt_dict = prompt_dict
811
+ data_point = dict(instruction='', input='', output='')
812
+ _, self.pre_response, self.terminate_response, self.chat_sep = \
813
+ generate_prompt(data_point, self.prompt_type, self.prompt_dict, chat, False)
814
+ self.debug = debug
815
+ self.chat = chat
816
+ self.stream_output = stream_output
817
+ self.repeat_penalty = repeat_penalty
818
+ self.allowed_repeat_line_length = allowed_repeat_line_length
819
+ self.prompt = None
820
+ context = "" # not for chat context
821
+ reduced = False # not for chat context
822
+ self.promptA, self.promptB, self.PreInstruct, self.PreInput, self.PreResponse, \
823
+ self.terminate_response, self.chat_sep, self.humanstr, self.botstr = \
824
+ get_prompt(self.prompt_type, self.prompt_dict, chat, context, reduced)
825
+
826
+ def generate_prompt(self, data_point):
827
+ reduced = False
828
+ prompt, _, _, _ = generate_prompt(data_point, self.prompt_type, self.prompt_dict, self.chat, reduced)
829
+ if self.debug:
830
+ print("prompt: %s" % prompt, flush=True)
831
+ self.prompt = prompt
832
+ return prompt
833
+
834
+ def get_response(self, outputs, prompt=None, sanitize_bot_response=False):
835
+ if isinstance(outputs, str):
836
+ outputs = [outputs]
837
+ if self.debug:
838
+ print("output:\n%s" % '\n\n'.join(outputs), flush=True)
839
+ if prompt is not None:
840
+ self.prompt = prompt
841
+
842
+ def clean_response(response):
843
+ meaningless_words = ['<pad>', '</s>', '<|endoftext|>']
844
+ for word in meaningless_words:
845
+ response = response.replace(word, "")
846
+ if sanitize_bot_response:
847
+ from better_profanity import profanity
848
+ response = profanity.censor(response)
849
+ response = response.strip("\n")
850
+ return response
851
+
852
+ def clean_repeats(response):
853
+ lines = response.split('\n')
854
+ new_lines = []
855
+ [new_lines.append(line) for line in lines if
856
+ line not in new_lines or len(line) < self.allowed_repeat_line_length]
857
+ if self.debug and len(lines) != len(new_lines):
858
+ print("cleaned repeats: %s %s" % (len(lines), len(new_lines)), flush=True)
859
+ response = '\n'.join(new_lines)
860
+ return response
861
+
862
+ multi_output = len(outputs) > 1
863
+
864
+ for oi, output in enumerate(outputs):
865
+ if self.prompt_type in [PromptType.plain.value, str(PromptType.plain.value), PromptType.plain.name]:
866
+ output = clean_response(output)
867
+ elif prompt is None:
868
+ # then use most basic parsing like pipeline
869
+ if self.botstr in output:
870
+ if self.humanstr:
871
+ output = clean_response(output.split(self.botstr)[1].strip().split(self.humanstr)[0].strip())
872
+ else:
873
+ # i.e. use after bot but only up to next bot
874
+ output = clean_response(output.split(self.botstr)[1].strip().split(self.botstr)[0].strip())
875
+ else:
876
+ # output = clean_response(output.strip())
877
+ # assume just not printed yet
878
+ output = ""
879
+ else:
880
+ # find first instance of prereponse
881
+ # prompt sometimes has odd characters, that mutate length,
882
+ # so can't go by length alone
883
+ if self.pre_response:
884
+ outputi = output.find(prompt)
885
+ if outputi >= 0:
886
+ output = output[outputi + len(prompt):]
887
+ allow_terminate = True
888
+ else:
889
+ # subtraction is risky due to space offsets sometimes, so only do if necessary
890
+ output = output[len(prompt) - len(self.pre_response):]
891
+ # [1] to avoid repeated pre_response, just take first (after prompt - pre_response for chat)
892
+ if self.pre_response in output:
893
+ output = output.split(self.pre_response)[1]
894
+ allow_terminate = True
895
+ else:
896
+ if output:
897
+ print("Failure of parsing or not enough output yet: %s" % output, flush=True)
898
+ allow_terminate = False
899
+ else:
900
+ allow_terminate = True
901
+ output = output[len(prompt):]
902
+ # clean after subtract prompt out, so correct removal of pre_response
903
+ output = clean_response(output).strip()
904
+ if self.repeat_penalty:
905
+ output = clean_repeats(output).strip()
906
+ if self.terminate_response and allow_terminate:
907
+ finds = []
908
+ for term in self.terminate_response:
909
+ finds.append(output.find(term))
910
+ finds = [x for x in finds if x >= 0]
911
+ if len(finds) > 0:
912
+ termi = finds[0]
913
+ output = output[:termi].strip()
914
+ else:
915
+ output = output.strip()
916
+ else:
917
+ output = output.strip()
918
+ if multi_output:
919
+ # prefix with output counter
920
+ output = "\n=========== Output %d\n\n" % (1 + oi) + output
921
+ if oi > 0:
922
+ # post fix outputs with seperator
923
+ output += '\n'
924
+ outputs[oi] = output
925
+ # join all outputs, only one extra new line between outputs
926
+ output = '\n'.join(outputs)
927
+ if self.debug:
928
+ print("outputclean:\n%s" % '\n\n'.join(outputs), flush=True)
929
+ return output
pytorch_model-00001-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61f6d005b09569252798e4ea185f0c0465e5ab023c5ddf3f94eecb173dce2a86
3
+ size 4659947169
pytorch_model-00002-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20b6abd947d5ed484fdc450038e7926014ac59d9714b65a363006a487f7a0786
3
+ size 4857113187
pytorch_model-00003-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54eaab98e489acb0aa3f57b1458492dc364d2c6c210bd5e12d2352d27eaf8e81
3
+ size 4857113187
pytorch_model-00004-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd58d7e8721393718144677837ac2020e329fbd0d72dc2f5b34c5a95f364a04b
3
+ size 4857113187
pytorch_model-00005-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cca55b5a7c82205dd0e5741c4c5960bafb0b41a360c81f4f2ed793ad490759f3
3
+ size 4857113187
pytorch_model-00006-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb4f02ec8d41085b127b2639af4b91e8597eae5f1f6781e64d7d121035a0cab4
3
+ size 4857113187
pytorch_model-00007-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b383b8aca0f99a1be5cc3c08a1a955a72ab16d8ae9a23692c18f59a4377138f1
3
+ size 4857113187
pytorch_model-00008-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:031b94889da374a5ca74eb77bcc763158cea24b39358c0a31d9f204837ce487b
3
+ size 4857113187
pytorch_model-00009-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:977a73595c2beacc0f1a75653b0643d145662a9921366aed56b7dfed97dbde11
3
+ size 4857113187
pytorch_model-00010-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:692999f66006f11c518be696bc0a3b545222d88058fa3984ff896f4374b94646
3
+ size 4857113187
pytorch_model-00011-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43870c96f01a50e64a8730538cb12dcfdeb13bbc58830d245cd0a66d28141607
3
+ size 4857113187
pytorch_model-00012-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b104eaa6691efaa55e23e1a9732a4502dfbbdc6a6757fcc49e38984218855b39
3
+ size 4857113187
pytorch_model-00013-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39c05baec0ebc87567c2308ead7f494b054f3b73dbfac8fac8e6cc8df6ccca68
3
+ size 4857113187
pytorch_model-00014-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8889763ef60c3866e0bfd598b493502e52b3c6b12c35413ae14f1c5b75b922e5
3
+ size 4857113187
pytorch_model-00015-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a371b03df3047a6b0239681e4155cdd656903ce48d428be984b99bef407b4dc
3
+ size 4857113187
pytorch_model-00016-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebe52f9719ca301b9c4b28f7ca14bf867138a957243c8cd2d7e89f43146a2893
3
+ size 4857113187
pytorch_model-00017-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c737acfec6f324c859340cceef04316d891b2267455873765eb02395ddf0e15
3
+ size 4857113187
pytorch_model-00018-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd738bc716430aaf7425eeb7762001842b2b7e9a195a6f9b39ea4b506bb1ee3b
3
+ size 4857113187
pytorch_model-00019-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e84ba2f0efc901548aec67c4b36a9bb7dc770c1f52f6431fb4813135d7a5e495
3
+ size 4857113187
pytorch_model-00020-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53fae31b8578a38c5ef74fc55f6a48608f4f7b41c270abdb5ecbcec25dad6758
3
+ size 4857113187
pytorch_model-00021-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a53f12d2f9564a9965b98688265878a8a2fead55c80fc722f7ee03bb9e15d574
3
+ size 4857113187
pytorch_model-00022-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ada24e8b5c959e6aa73a1f44318e1bc47c14ac09a0e1b67c72c98b67da0e53e5
3
+ size 4857113187
pytorch_model-00023-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:148bca292f74ae8b924d7826205362e4979b8b39c9f6a87a7d355ba67ca1e948
3
+ size 4857113187
pytorch_model-00024-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a20dbcfd5b0b7048be56cb75932a3cbccfff189ff58a24a80f33431dfc9af8a
3
+ size 4857113187
pytorch_model-00025-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a3c4b19b86b3e41eebbc68c5cf4341135b0375ecbf44f2811940ab9498ce8e6
3
+ size 4857113187
pytorch_model-00026-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc7d7be5810786007ebdef16fb110ad817b0d58a6ebbdcd1e69196b857eaafef
3
+ size 4857113187
pytorch_model-00027-of-00027.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b182b4625f41bd805de99744b1e675c3f7f99b3c3757e0b9b96b97ab543e221b
3
+ size 4483834935
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,810 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 130571341824
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00027-of-00027.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00027.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00027.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00027.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00027.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00027.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00027.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00027.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00027.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00027.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00027.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00027.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00027.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00027.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00027.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00027.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00027.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00027.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00027.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00027.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00027.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00027.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00004-of-00027.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00004-of-00027.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00004-of-00027.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00004-of-00027.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00004-of-00027.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00004-of-00027.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00004-of-00027.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00004-of-00027.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00027.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00004-of-00027.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00005-of-00027.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00005-of-00027.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00004-of-00027.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00005-of-00027.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00005-of-00027.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00004-of-00027.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00004-of-00027.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00004-of-00027.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00027.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00004-of-00027.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00005-of-00027.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00005-of-00027.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00005-of-00027.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00005-of-00027.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00005-of-00027.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00005-of-00027.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00005-of-00027.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00005-of-00027.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00027.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00005-of-00027.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00005-of-00027.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00005-of-00027.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00005-of-00027.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00005-of-00027.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00005-of-00027.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00005-of-00027.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00005-of-00027.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00005-of-00027.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00027.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00005-of-00027.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00006-of-00027.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00006-of-00027.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00005-of-00027.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00006-of-00027.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00006-of-00027.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00005-of-00027.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00005-of-00027.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00005-of-00027.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00027.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00005-of-00027.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00006-of-00027.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00006-of-00027.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00006-of-00027.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00006-of-00027.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00006-of-00027.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00006-of-00027.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00006-of-00027.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00006-of-00027.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00027.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00006-of-00027.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00006-of-00027.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00006-of-00027.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00006-of-00027.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00006-of-00027.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00006-of-00027.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00006-of-00027.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00006-of-00027.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00006-of-00027.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00027.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00006-of-00027.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00007-of-00027.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00007-of-00027.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00006-of-00027.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00007-of-00027.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00007-of-00027.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00006-of-00027.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00006-of-00027.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00006-of-00027.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00027.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00006-of-00027.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00007-of-00027.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00007-of-00027.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00007-of-00027.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00007-of-00027.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00007-of-00027.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00007-of-00027.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00007-of-00027.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00007-of-00027.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00027.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00007-of-00027.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00007-of-00027.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00007-of-00027.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00007-of-00027.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00007-of-00027.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00007-of-00027.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00007-of-00027.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00007-of-00027.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00007-of-00027.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00027.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00007-of-00027.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00002-of-00027.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00002-of-00027.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00027.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00002-of-00027.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00002-of-00027.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00027.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00027.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00027.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00027.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00027.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00008-of-00027.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00008-of-00027.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00007-of-00027.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00008-of-00027.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00008-of-00027.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00007-of-00027.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00007-of-00027.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00007-of-00027.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00027.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00007-of-00027.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00008-of-00027.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00008-of-00027.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00008-of-00027.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00008-of-00027.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00008-of-00027.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00008-of-00027.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00008-of-00027.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00008-of-00027.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00027.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00008-of-00027.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00008-of-00027.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00008-of-00027.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00008-of-00027.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00008-of-00027.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00008-of-00027.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00008-of-00027.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00008-of-00027.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00008-of-00027.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00027.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00008-of-00027.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00009-of-00027.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00009-of-00027.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00008-of-00027.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00009-of-00027.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00009-of-00027.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00008-of-00027.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00008-of-00027.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00008-of-00027.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00027.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00008-of-00027.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00009-of-00027.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00009-of-00027.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00009-of-00027.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00009-of-00027.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00009-of-00027.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00009-of-00027.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00009-of-00027.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00009-of-00027.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00027.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00009-of-00027.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00009-of-00027.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00009-of-00027.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00009-of-00027.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00009-of-00027.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00009-of-00027.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00009-of-00027.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00009-of-00027.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00009-of-00027.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00027.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00009-of-00027.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00010-of-00027.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00010-of-00027.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00009-of-00027.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00010-of-00027.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00010-of-00027.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00009-of-00027.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00009-of-00027.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00009-of-00027.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00027.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00009-of-00027.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00010-of-00027.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00010-of-00027.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00010-of-00027.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00010-of-00027.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00010-of-00027.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00010-of-00027.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00010-of-00027.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00010-of-00027.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00027.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00010-of-00027.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00010-of-00027.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00010-of-00027.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00010-of-00027.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00010-of-00027.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00010-of-00027.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00010-of-00027.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00010-of-00027.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00010-of-00027.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00027.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00010-of-00027.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00011-of-00027.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00011-of-00027.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00010-of-00027.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00011-of-00027.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00011-of-00027.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00010-of-00027.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00010-of-00027.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00010-of-00027.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00027.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00010-of-00027.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00002-of-00027.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00002-of-00027.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00002-of-00027.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00002-of-00027.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00002-of-00027.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00002-of-00027.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00002-of-00027.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00002-of-00027.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00027.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00002-of-00027.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00011-of-00027.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00011-of-00027.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00011-of-00027.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00011-of-00027.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00011-of-00027.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00011-of-00027.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00011-of-00027.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00011-of-00027.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00027.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00011-of-00027.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00011-of-00027.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00011-of-00027.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00011-of-00027.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00011-of-00027.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00011-of-00027.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00011-of-00027.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00011-of-00027.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00011-of-00027.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00027.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00011-of-00027.bin",
268
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00012-of-00027.bin",
269
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00012-of-00027.bin",
270
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00011-of-00027.bin",
271
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00012-of-00027.bin",
272
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00012-of-00027.bin",
273
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00011-of-00027.bin",
274
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00011-of-00027.bin",
275
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00011-of-00027.bin",
276
+ "model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00027.bin",
277
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00011-of-00027.bin",
278
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00012-of-00027.bin",
279
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00012-of-00027.bin",
280
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00012-of-00027.bin",
281
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00012-of-00027.bin",
282
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00012-of-00027.bin",
283
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00012-of-00027.bin",
284
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00012-of-00027.bin",
285
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00012-of-00027.bin",
286
+ "model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00027.bin",
287
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00012-of-00027.bin",
288
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00012-of-00027.bin",
289
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00012-of-00027.bin",
290
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00012-of-00027.bin",
291
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00012-of-00027.bin",
292
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00012-of-00027.bin",
293
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00012-of-00027.bin",
294
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00012-of-00027.bin",
295
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00012-of-00027.bin",
296
+ "model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00027.bin",
297
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00012-of-00027.bin",
298
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00013-of-00027.bin",
299
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00013-of-00027.bin",
300
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00012-of-00027.bin",
301
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00013-of-00027.bin",
302
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00013-of-00027.bin",
303
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00012-of-00027.bin",
304
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00012-of-00027.bin",
305
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00012-of-00027.bin",
306
+ "model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00027.bin",
307
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00012-of-00027.bin",
308
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00013-of-00027.bin",
309
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00013-of-00027.bin",
310
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00013-of-00027.bin",
311
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00013-of-00027.bin",
312
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00013-of-00027.bin",
313
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00013-of-00027.bin",
314
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00013-of-00027.bin",
315
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00013-of-00027.bin",
316
+ "model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00027.bin",
317
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00013-of-00027.bin",
318
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00013-of-00027.bin",
319
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00013-of-00027.bin",
320
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00013-of-00027.bin",
321
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00013-of-00027.bin",
322
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00013-of-00027.bin",
323
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00013-of-00027.bin",
324
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00013-of-00027.bin",
325
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00013-of-00027.bin",
326
+ "model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00027.bin",
327
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00013-of-00027.bin",
328
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00014-of-00027.bin",
329
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00014-of-00027.bin",
330
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00013-of-00027.bin",
331
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00014-of-00027.bin",
332
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00014-of-00027.bin",
333
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00013-of-00027.bin",
334
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00013-of-00027.bin",
335
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00013-of-00027.bin",
336
+ "model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00027.bin",
337
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00013-of-00027.bin",
338
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00014-of-00027.bin",
339
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00014-of-00027.bin",
340
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00014-of-00027.bin",
341
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00014-of-00027.bin",
342
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00014-of-00027.bin",
343
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00014-of-00027.bin",
344
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00014-of-00027.bin",
345
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00014-of-00027.bin",
346
+ "model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00027.bin",
347
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00014-of-00027.bin",
348
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00002-of-00027.bin",
349
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00002-of-00027.bin",
350
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00002-of-00027.bin",
351
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00002-of-00027.bin",
352
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00002-of-00027.bin",
353
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00002-of-00027.bin",
354
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00002-of-00027.bin",
355
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00002-of-00027.bin",
356
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00027.bin",
357
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00002-of-00027.bin",
358
+ "model.layers.40.input_layernorm.weight": "pytorch_model-00014-of-00027.bin",
359
+ "model.layers.40.mlp.down_proj.weight": "pytorch_model-00014-of-00027.bin",
360
+ "model.layers.40.mlp.gate_proj.weight": "pytorch_model-00014-of-00027.bin",
361
+ "model.layers.40.mlp.up_proj.weight": "pytorch_model-00014-of-00027.bin",
362
+ "model.layers.40.post_attention_layernorm.weight": "pytorch_model-00014-of-00027.bin",
363
+ "model.layers.40.self_attn.k_proj.weight": "pytorch_model-00014-of-00027.bin",
364
+ "model.layers.40.self_attn.o_proj.weight": "pytorch_model-00014-of-00027.bin",
365
+ "model.layers.40.self_attn.q_proj.weight": "pytorch_model-00014-of-00027.bin",
366
+ "model.layers.40.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00027.bin",
367
+ "model.layers.40.self_attn.v_proj.weight": "pytorch_model-00014-of-00027.bin",
368
+ "model.layers.41.input_layernorm.weight": "pytorch_model-00015-of-00027.bin",
369
+ "model.layers.41.mlp.down_proj.weight": "pytorch_model-00015-of-00027.bin",
370
+ "model.layers.41.mlp.gate_proj.weight": "pytorch_model-00014-of-00027.bin",
371
+ "model.layers.41.mlp.up_proj.weight": "pytorch_model-00015-of-00027.bin",
372
+ "model.layers.41.post_attention_layernorm.weight": "pytorch_model-00015-of-00027.bin",
373
+ "model.layers.41.self_attn.k_proj.weight": "pytorch_model-00014-of-00027.bin",
374
+ "model.layers.41.self_attn.o_proj.weight": "pytorch_model-00014-of-00027.bin",
375
+ "model.layers.41.self_attn.q_proj.weight": "pytorch_model-00014-of-00027.bin",
376
+ "model.layers.41.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00027.bin",
377
+ "model.layers.41.self_attn.v_proj.weight": "pytorch_model-00014-of-00027.bin",
378
+ "model.layers.42.input_layernorm.weight": "pytorch_model-00015-of-00027.bin",
379
+ "model.layers.42.mlp.down_proj.weight": "pytorch_model-00015-of-00027.bin",
380
+ "model.layers.42.mlp.gate_proj.weight": "pytorch_model-00015-of-00027.bin",
381
+ "model.layers.42.mlp.up_proj.weight": "pytorch_model-00015-of-00027.bin",
382
+ "model.layers.42.post_attention_layernorm.weight": "pytorch_model-00015-of-00027.bin",
383
+ "model.layers.42.self_attn.k_proj.weight": "pytorch_model-00015-of-00027.bin",
384
+ "model.layers.42.self_attn.o_proj.weight": "pytorch_model-00015-of-00027.bin",
385
+ "model.layers.42.self_attn.q_proj.weight": "pytorch_model-00015-of-00027.bin",
386
+ "model.layers.42.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00027.bin",
387
+ "model.layers.42.self_attn.v_proj.weight": "pytorch_model-00015-of-00027.bin",
388
+ "model.layers.43.input_layernorm.weight": "pytorch_model-00015-of-00027.bin",
389
+ "model.layers.43.mlp.down_proj.weight": "pytorch_model-00015-of-00027.bin",
390
+ "model.layers.43.mlp.gate_proj.weight": "pytorch_model-00015-of-00027.bin",
391
+ "model.layers.43.mlp.up_proj.weight": "pytorch_model-00015-of-00027.bin",
392
+ "model.layers.43.post_attention_layernorm.weight": "pytorch_model-00015-of-00027.bin",
393
+ "model.layers.43.self_attn.k_proj.weight": "pytorch_model-00015-of-00027.bin",
394
+ "model.layers.43.self_attn.o_proj.weight": "pytorch_model-00015-of-00027.bin",
395
+ "model.layers.43.self_attn.q_proj.weight": "pytorch_model-00015-of-00027.bin",
396
+ "model.layers.43.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00027.bin",
397
+ "model.layers.43.self_attn.v_proj.weight": "pytorch_model-00015-of-00027.bin",
398
+ "model.layers.44.input_layernorm.weight": "pytorch_model-00016-of-00027.bin",
399
+ "model.layers.44.mlp.down_proj.weight": "pytorch_model-00016-of-00027.bin",
400
+ "model.layers.44.mlp.gate_proj.weight": "pytorch_model-00015-of-00027.bin",
401
+ "model.layers.44.mlp.up_proj.weight": "pytorch_model-00016-of-00027.bin",
402
+ "model.layers.44.post_attention_layernorm.weight": "pytorch_model-00016-of-00027.bin",
403
+ "model.layers.44.self_attn.k_proj.weight": "pytorch_model-00015-of-00027.bin",
404
+ "model.layers.44.self_attn.o_proj.weight": "pytorch_model-00015-of-00027.bin",
405
+ "model.layers.44.self_attn.q_proj.weight": "pytorch_model-00015-of-00027.bin",
406
+ "model.layers.44.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00027.bin",
407
+ "model.layers.44.self_attn.v_proj.weight": "pytorch_model-00015-of-00027.bin",
408
+ "model.layers.45.input_layernorm.weight": "pytorch_model-00016-of-00027.bin",
409
+ "model.layers.45.mlp.down_proj.weight": "pytorch_model-00016-of-00027.bin",
410
+ "model.layers.45.mlp.gate_proj.weight": "pytorch_model-00016-of-00027.bin",
411
+ "model.layers.45.mlp.up_proj.weight": "pytorch_model-00016-of-00027.bin",
412
+ "model.layers.45.post_attention_layernorm.weight": "pytorch_model-00016-of-00027.bin",
413
+ "model.layers.45.self_attn.k_proj.weight": "pytorch_model-00016-of-00027.bin",
414
+ "model.layers.45.self_attn.o_proj.weight": "pytorch_model-00016-of-00027.bin",
415
+ "model.layers.45.self_attn.q_proj.weight": "pytorch_model-00016-of-00027.bin",
416
+ "model.layers.45.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00027.bin",
417
+ "model.layers.45.self_attn.v_proj.weight": "pytorch_model-00016-of-00027.bin",
418
+ "model.layers.46.input_layernorm.weight": "pytorch_model-00016-of-00027.bin",
419
+ "model.layers.46.mlp.down_proj.weight": "pytorch_model-00016-of-00027.bin",
420
+ "model.layers.46.mlp.gate_proj.weight": "pytorch_model-00016-of-00027.bin",
421
+ "model.layers.46.mlp.up_proj.weight": "pytorch_model-00016-of-00027.bin",
422
+ "model.layers.46.post_attention_layernorm.weight": "pytorch_model-00016-of-00027.bin",
423
+ "model.layers.46.self_attn.k_proj.weight": "pytorch_model-00016-of-00027.bin",
424
+ "model.layers.46.self_attn.o_proj.weight": "pytorch_model-00016-of-00027.bin",
425
+ "model.layers.46.self_attn.q_proj.weight": "pytorch_model-00016-of-00027.bin",
426
+ "model.layers.46.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00027.bin",
427
+ "model.layers.46.self_attn.v_proj.weight": "pytorch_model-00016-of-00027.bin",
428
+ "model.layers.47.input_layernorm.weight": "pytorch_model-00017-of-00027.bin",
429
+ "model.layers.47.mlp.down_proj.weight": "pytorch_model-00017-of-00027.bin",
430
+ "model.layers.47.mlp.gate_proj.weight": "pytorch_model-00016-of-00027.bin",
431
+ "model.layers.47.mlp.up_proj.weight": "pytorch_model-00017-of-00027.bin",
432
+ "model.layers.47.post_attention_layernorm.weight": "pytorch_model-00017-of-00027.bin",
433
+ "model.layers.47.self_attn.k_proj.weight": "pytorch_model-00016-of-00027.bin",
434
+ "model.layers.47.self_attn.o_proj.weight": "pytorch_model-00016-of-00027.bin",
435
+ "model.layers.47.self_attn.q_proj.weight": "pytorch_model-00016-of-00027.bin",
436
+ "model.layers.47.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00027.bin",
437
+ "model.layers.47.self_attn.v_proj.weight": "pytorch_model-00016-of-00027.bin",
438
+ "model.layers.48.input_layernorm.weight": "pytorch_model-00017-of-00027.bin",
439
+ "model.layers.48.mlp.down_proj.weight": "pytorch_model-00017-of-00027.bin",
440
+ "model.layers.48.mlp.gate_proj.weight": "pytorch_model-00017-of-00027.bin",
441
+ "model.layers.48.mlp.up_proj.weight": "pytorch_model-00017-of-00027.bin",
442
+ "model.layers.48.post_attention_layernorm.weight": "pytorch_model-00017-of-00027.bin",
443
+ "model.layers.48.self_attn.k_proj.weight": "pytorch_model-00017-of-00027.bin",
444
+ "model.layers.48.self_attn.o_proj.weight": "pytorch_model-00017-of-00027.bin",
445
+ "model.layers.48.self_attn.q_proj.weight": "pytorch_model-00017-of-00027.bin",
446
+ "model.layers.48.self_attn.rotary_emb.inv_freq": "pytorch_model-00017-of-00027.bin",
447
+ "model.layers.48.self_attn.v_proj.weight": "pytorch_model-00017-of-00027.bin",
448
+ "model.layers.49.input_layernorm.weight": "pytorch_model-00017-of-00027.bin",
449
+ "model.layers.49.mlp.down_proj.weight": "pytorch_model-00017-of-00027.bin",
450
+ "model.layers.49.mlp.gate_proj.weight": "pytorch_model-00017-of-00027.bin",
451
+ "model.layers.49.mlp.up_proj.weight": "pytorch_model-00017-of-00027.bin",
452
+ "model.layers.49.post_attention_layernorm.weight": "pytorch_model-00017-of-00027.bin",
453
+ "model.layers.49.self_attn.k_proj.weight": "pytorch_model-00017-of-00027.bin",
454
+ "model.layers.49.self_attn.o_proj.weight": "pytorch_model-00017-of-00027.bin",
455
+ "model.layers.49.self_attn.q_proj.weight": "pytorch_model-00017-of-00027.bin",
456
+ "model.layers.49.self_attn.rotary_emb.inv_freq": "pytorch_model-00017-of-00027.bin",
457
+ "model.layers.49.self_attn.v_proj.weight": "pytorch_model-00017-of-00027.bin",
458
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00003-of-00027.bin",
459
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00003-of-00027.bin",
460
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00002-of-00027.bin",
461
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00003-of-00027.bin",
462
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00003-of-00027.bin",
463
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00002-of-00027.bin",
464
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00002-of-00027.bin",
465
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00002-of-00027.bin",
466
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00027.bin",
467
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00002-of-00027.bin",
468
+ "model.layers.50.input_layernorm.weight": "pytorch_model-00018-of-00027.bin",
469
+ "model.layers.50.mlp.down_proj.weight": "pytorch_model-00018-of-00027.bin",
470
+ "model.layers.50.mlp.gate_proj.weight": "pytorch_model-00017-of-00027.bin",
471
+ "model.layers.50.mlp.up_proj.weight": "pytorch_model-00018-of-00027.bin",
472
+ "model.layers.50.post_attention_layernorm.weight": "pytorch_model-00018-of-00027.bin",
473
+ "model.layers.50.self_attn.k_proj.weight": "pytorch_model-00017-of-00027.bin",
474
+ "model.layers.50.self_attn.o_proj.weight": "pytorch_model-00017-of-00027.bin",
475
+ "model.layers.50.self_attn.q_proj.weight": "pytorch_model-00017-of-00027.bin",
476
+ "model.layers.50.self_attn.rotary_emb.inv_freq": "pytorch_model-00017-of-00027.bin",
477
+ "model.layers.50.self_attn.v_proj.weight": "pytorch_model-00017-of-00027.bin",
478
+ "model.layers.51.input_layernorm.weight": "pytorch_model-00018-of-00027.bin",
479
+ "model.layers.51.mlp.down_proj.weight": "pytorch_model-00018-of-00027.bin",
480
+ "model.layers.51.mlp.gate_proj.weight": "pytorch_model-00018-of-00027.bin",
481
+ "model.layers.51.mlp.up_proj.weight": "pytorch_model-00018-of-00027.bin",
482
+ "model.layers.51.post_attention_layernorm.weight": "pytorch_model-00018-of-00027.bin",
483
+ "model.layers.51.self_attn.k_proj.weight": "pytorch_model-00018-of-00027.bin",
484
+ "model.layers.51.self_attn.o_proj.weight": "pytorch_model-00018-of-00027.bin",
485
+ "model.layers.51.self_attn.q_proj.weight": "pytorch_model-00018-of-00027.bin",
486
+ "model.layers.51.self_attn.rotary_emb.inv_freq": "pytorch_model-00018-of-00027.bin",
487
+ "model.layers.51.self_attn.v_proj.weight": "pytorch_model-00018-of-00027.bin",
488
+ "model.layers.52.input_layernorm.weight": "pytorch_model-00018-of-00027.bin",
489
+ "model.layers.52.mlp.down_proj.weight": "pytorch_model-00018-of-00027.bin",
490
+ "model.layers.52.mlp.gate_proj.weight": "pytorch_model-00018-of-00027.bin",
491
+ "model.layers.52.mlp.up_proj.weight": "pytorch_model-00018-of-00027.bin",
492
+ "model.layers.52.post_attention_layernorm.weight": "pytorch_model-00018-of-00027.bin",
493
+ "model.layers.52.self_attn.k_proj.weight": "pytorch_model-00018-of-00027.bin",
494
+ "model.layers.52.self_attn.o_proj.weight": "pytorch_model-00018-of-00027.bin",
495
+ "model.layers.52.self_attn.q_proj.weight": "pytorch_model-00018-of-00027.bin",
496
+ "model.layers.52.self_attn.rotary_emb.inv_freq": "pytorch_model-00018-of-00027.bin",
497
+ "model.layers.52.self_attn.v_proj.weight": "pytorch_model-00018-of-00027.bin",
498
+ "model.layers.53.input_layernorm.weight": "pytorch_model-00019-of-00027.bin",
499
+ "model.layers.53.mlp.down_proj.weight": "pytorch_model-00019-of-00027.bin",
500
+ "model.layers.53.mlp.gate_proj.weight": "pytorch_model-00018-of-00027.bin",
501
+ "model.layers.53.mlp.up_proj.weight": "pytorch_model-00019-of-00027.bin",
502
+ "model.layers.53.post_attention_layernorm.weight": "pytorch_model-00019-of-00027.bin",
503
+ "model.layers.53.self_attn.k_proj.weight": "pytorch_model-00018-of-00027.bin",
504
+ "model.layers.53.self_attn.o_proj.weight": "pytorch_model-00018-of-00027.bin",
505
+ "model.layers.53.self_attn.q_proj.weight": "pytorch_model-00018-of-00027.bin",
506
+ "model.layers.53.self_attn.rotary_emb.inv_freq": "pytorch_model-00018-of-00027.bin",
507
+ "model.layers.53.self_attn.v_proj.weight": "pytorch_model-00018-of-00027.bin",
508
+ "model.layers.54.input_layernorm.weight": "pytorch_model-00019-of-00027.bin",
509
+ "model.layers.54.mlp.down_proj.weight": "pytorch_model-00019-of-00027.bin",
510
+ "model.layers.54.mlp.gate_proj.weight": "pytorch_model-00019-of-00027.bin",
511
+ "model.layers.54.mlp.up_proj.weight": "pytorch_model-00019-of-00027.bin",
512
+ "model.layers.54.post_attention_layernorm.weight": "pytorch_model-00019-of-00027.bin",
513
+ "model.layers.54.self_attn.k_proj.weight": "pytorch_model-00019-of-00027.bin",
514
+ "model.layers.54.self_attn.o_proj.weight": "pytorch_model-00019-of-00027.bin",
515
+ "model.layers.54.self_attn.q_proj.weight": "pytorch_model-00019-of-00027.bin",
516
+ "model.layers.54.self_attn.rotary_emb.inv_freq": "pytorch_model-00019-of-00027.bin",
517
+ "model.layers.54.self_attn.v_proj.weight": "pytorch_model-00019-of-00027.bin",
518
+ "model.layers.55.input_layernorm.weight": "pytorch_model-00019-of-00027.bin",
519
+ "model.layers.55.mlp.down_proj.weight": "pytorch_model-00019-of-00027.bin",
520
+ "model.layers.55.mlp.gate_proj.weight": "pytorch_model-00019-of-00027.bin",
521
+ "model.layers.55.mlp.up_proj.weight": "pytorch_model-00019-of-00027.bin",
522
+ "model.layers.55.post_attention_layernorm.weight": "pytorch_model-00019-of-00027.bin",
523
+ "model.layers.55.self_attn.k_proj.weight": "pytorch_model-00019-of-00027.bin",
524
+ "model.layers.55.self_attn.o_proj.weight": "pytorch_model-00019-of-00027.bin",
525
+ "model.layers.55.self_attn.q_proj.weight": "pytorch_model-00019-of-00027.bin",
526
+ "model.layers.55.self_attn.rotary_emb.inv_freq": "pytorch_model-00019-of-00027.bin",
527
+ "model.layers.55.self_attn.v_proj.weight": "pytorch_model-00019-of-00027.bin",
528
+ "model.layers.56.input_layernorm.weight": "pytorch_model-00020-of-00027.bin",
529
+ "model.layers.56.mlp.down_proj.weight": "pytorch_model-00020-of-00027.bin",
530
+ "model.layers.56.mlp.gate_proj.weight": "pytorch_model-00019-of-00027.bin",
531
+ "model.layers.56.mlp.up_proj.weight": "pytorch_model-00020-of-00027.bin",
532
+ "model.layers.56.post_attention_layernorm.weight": "pytorch_model-00020-of-00027.bin",
533
+ "model.layers.56.self_attn.k_proj.weight": "pytorch_model-00019-of-00027.bin",
534
+ "model.layers.56.self_attn.o_proj.weight": "pytorch_model-00019-of-00027.bin",
535
+ "model.layers.56.self_attn.q_proj.weight": "pytorch_model-00019-of-00027.bin",
536
+ "model.layers.56.self_attn.rotary_emb.inv_freq": "pytorch_model-00019-of-00027.bin",
537
+ "model.layers.56.self_attn.v_proj.weight": "pytorch_model-00019-of-00027.bin",
538
+ "model.layers.57.input_layernorm.weight": "pytorch_model-00020-of-00027.bin",
539
+ "model.layers.57.mlp.down_proj.weight": "pytorch_model-00020-of-00027.bin",
540
+ "model.layers.57.mlp.gate_proj.weight": "pytorch_model-00020-of-00027.bin",
541
+ "model.layers.57.mlp.up_proj.weight": "pytorch_model-00020-of-00027.bin",
542
+ "model.layers.57.post_attention_layernorm.weight": "pytorch_model-00020-of-00027.bin",
543
+ "model.layers.57.self_attn.k_proj.weight": "pytorch_model-00020-of-00027.bin",
544
+ "model.layers.57.self_attn.o_proj.weight": "pytorch_model-00020-of-00027.bin",
545
+ "model.layers.57.self_attn.q_proj.weight": "pytorch_model-00020-of-00027.bin",
546
+ "model.layers.57.self_attn.rotary_emb.inv_freq": "pytorch_model-00020-of-00027.bin",
547
+ "model.layers.57.self_attn.v_proj.weight": "pytorch_model-00020-of-00027.bin",
548
+ "model.layers.58.input_layernorm.weight": "pytorch_model-00020-of-00027.bin",
549
+ "model.layers.58.mlp.down_proj.weight": "pytorch_model-00020-of-00027.bin",
550
+ "model.layers.58.mlp.gate_proj.weight": "pytorch_model-00020-of-00027.bin",
551
+ "model.layers.58.mlp.up_proj.weight": "pytorch_model-00020-of-00027.bin",
552
+ "model.layers.58.post_attention_layernorm.weight": "pytorch_model-00020-of-00027.bin",
553
+ "model.layers.58.self_attn.k_proj.weight": "pytorch_model-00020-of-00027.bin",
554
+ "model.layers.58.self_attn.o_proj.weight": "pytorch_model-00020-of-00027.bin",
555
+ "model.layers.58.self_attn.q_proj.weight": "pytorch_model-00020-of-00027.bin",
556
+ "model.layers.58.self_attn.rotary_emb.inv_freq": "pytorch_model-00020-of-00027.bin",
557
+ "model.layers.58.self_attn.v_proj.weight": "pytorch_model-00020-of-00027.bin",
558
+ "model.layers.59.input_layernorm.weight": "pytorch_model-00021-of-00027.bin",
559
+ "model.layers.59.mlp.down_proj.weight": "pytorch_model-00021-of-00027.bin",
560
+ "model.layers.59.mlp.gate_proj.weight": "pytorch_model-00020-of-00027.bin",
561
+ "model.layers.59.mlp.up_proj.weight": "pytorch_model-00021-of-00027.bin",
562
+ "model.layers.59.post_attention_layernorm.weight": "pytorch_model-00021-of-00027.bin",
563
+ "model.layers.59.self_attn.k_proj.weight": "pytorch_model-00020-of-00027.bin",
564
+ "model.layers.59.self_attn.o_proj.weight": "pytorch_model-00020-of-00027.bin",
565
+ "model.layers.59.self_attn.q_proj.weight": "pytorch_model-00020-of-00027.bin",
566
+ "model.layers.59.self_attn.rotary_emb.inv_freq": "pytorch_model-00020-of-00027.bin",
567
+ "model.layers.59.self_attn.v_proj.weight": "pytorch_model-00020-of-00027.bin",
568
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00003-of-00027.bin",
569
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00003-of-00027.bin",
570
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00003-of-00027.bin",
571
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00003-of-00027.bin",
572
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00003-of-00027.bin",
573
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00003-of-00027.bin",
574
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00003-of-00027.bin",
575
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00003-of-00027.bin",
576
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00027.bin",
577
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00003-of-00027.bin",
578
+ "model.layers.60.input_layernorm.weight": "pytorch_model-00021-of-00027.bin",
579
+ "model.layers.60.mlp.down_proj.weight": "pytorch_model-00021-of-00027.bin",
580
+ "model.layers.60.mlp.gate_proj.weight": "pytorch_model-00021-of-00027.bin",
581
+ "model.layers.60.mlp.up_proj.weight": "pytorch_model-00021-of-00027.bin",
582
+ "model.layers.60.post_attention_layernorm.weight": "pytorch_model-00021-of-00027.bin",
583
+ "model.layers.60.self_attn.k_proj.weight": "pytorch_model-00021-of-00027.bin",
584
+ "model.layers.60.self_attn.o_proj.weight": "pytorch_model-00021-of-00027.bin",
585
+ "model.layers.60.self_attn.q_proj.weight": "pytorch_model-00021-of-00027.bin",
586
+ "model.layers.60.self_attn.rotary_emb.inv_freq": "pytorch_model-00021-of-00027.bin",
587
+ "model.layers.60.self_attn.v_proj.weight": "pytorch_model-00021-of-00027.bin",
588
+ "model.layers.61.input_layernorm.weight": "pytorch_model-00021-of-00027.bin",
589
+ "model.layers.61.mlp.down_proj.weight": "pytorch_model-00021-of-00027.bin",
590
+ "model.layers.61.mlp.gate_proj.weight": "pytorch_model-00021-of-00027.bin",
591
+ "model.layers.61.mlp.up_proj.weight": "pytorch_model-00021-of-00027.bin",
592
+ "model.layers.61.post_attention_layernorm.weight": "pytorch_model-00021-of-00027.bin",
593
+ "model.layers.61.self_attn.k_proj.weight": "pytorch_model-00021-of-00027.bin",
594
+ "model.layers.61.self_attn.o_proj.weight": "pytorch_model-00021-of-00027.bin",
595
+ "model.layers.61.self_attn.q_proj.weight": "pytorch_model-00021-of-00027.bin",
596
+ "model.layers.61.self_attn.rotary_emb.inv_freq": "pytorch_model-00021-of-00027.bin",
597
+ "model.layers.61.self_attn.v_proj.weight": "pytorch_model-00021-of-00027.bin",
598
+ "model.layers.62.input_layernorm.weight": "pytorch_model-00022-of-00027.bin",
599
+ "model.layers.62.mlp.down_proj.weight": "pytorch_model-00022-of-00027.bin",
600
+ "model.layers.62.mlp.gate_proj.weight": "pytorch_model-00021-of-00027.bin",
601
+ "model.layers.62.mlp.up_proj.weight": "pytorch_model-00022-of-00027.bin",
602
+ "model.layers.62.post_attention_layernorm.weight": "pytorch_model-00022-of-00027.bin",
603
+ "model.layers.62.self_attn.k_proj.weight": "pytorch_model-00021-of-00027.bin",
604
+ "model.layers.62.self_attn.o_proj.weight": "pytorch_model-00021-of-00027.bin",
605
+ "model.layers.62.self_attn.q_proj.weight": "pytorch_model-00021-of-00027.bin",
606
+ "model.layers.62.self_attn.rotary_emb.inv_freq": "pytorch_model-00021-of-00027.bin",
607
+ "model.layers.62.self_attn.v_proj.weight": "pytorch_model-00021-of-00027.bin",
608
+ "model.layers.63.input_layernorm.weight": "pytorch_model-00022-of-00027.bin",
609
+ "model.layers.63.mlp.down_proj.weight": "pytorch_model-00022-of-00027.bin",
610
+ "model.layers.63.mlp.gate_proj.weight": "pytorch_model-00022-of-00027.bin",
611
+ "model.layers.63.mlp.up_proj.weight": "pytorch_model-00022-of-00027.bin",
612
+ "model.layers.63.post_attention_layernorm.weight": "pytorch_model-00022-of-00027.bin",
613
+ "model.layers.63.self_attn.k_proj.weight": "pytorch_model-00022-of-00027.bin",
614
+ "model.layers.63.self_attn.o_proj.weight": "pytorch_model-00022-of-00027.bin",
615
+ "model.layers.63.self_attn.q_proj.weight": "pytorch_model-00022-of-00027.bin",
616
+ "model.layers.63.self_attn.rotary_emb.inv_freq": "pytorch_model-00022-of-00027.bin",
617
+ "model.layers.63.self_attn.v_proj.weight": "pytorch_model-00022-of-00027.bin",
618
+ "model.layers.64.input_layernorm.weight": "pytorch_model-00022-of-00027.bin",
619
+ "model.layers.64.mlp.down_proj.weight": "pytorch_model-00022-of-00027.bin",
620
+ "model.layers.64.mlp.gate_proj.weight": "pytorch_model-00022-of-00027.bin",
621
+ "model.layers.64.mlp.up_proj.weight": "pytorch_model-00022-of-00027.bin",
622
+ "model.layers.64.post_attention_layernorm.weight": "pytorch_model-00022-of-00027.bin",
623
+ "model.layers.64.self_attn.k_proj.weight": "pytorch_model-00022-of-00027.bin",
624
+ "model.layers.64.self_attn.o_proj.weight": "pytorch_model-00022-of-00027.bin",
625
+ "model.layers.64.self_attn.q_proj.weight": "pytorch_model-00022-of-00027.bin",
626
+ "model.layers.64.self_attn.rotary_emb.inv_freq": "pytorch_model-00022-of-00027.bin",
627
+ "model.layers.64.self_attn.v_proj.weight": "pytorch_model-00022-of-00027.bin",
628
+ "model.layers.65.input_layernorm.weight": "pytorch_model-00023-of-00027.bin",
629
+ "model.layers.65.mlp.down_proj.weight": "pytorch_model-00023-of-00027.bin",
630
+ "model.layers.65.mlp.gate_proj.weight": "pytorch_model-00022-of-00027.bin",
631
+ "model.layers.65.mlp.up_proj.weight": "pytorch_model-00023-of-00027.bin",
632
+ "model.layers.65.post_attention_layernorm.weight": "pytorch_model-00023-of-00027.bin",
633
+ "model.layers.65.self_attn.k_proj.weight": "pytorch_model-00022-of-00027.bin",
634
+ "model.layers.65.self_attn.o_proj.weight": "pytorch_model-00022-of-00027.bin",
635
+ "model.layers.65.self_attn.q_proj.weight": "pytorch_model-00022-of-00027.bin",
636
+ "model.layers.65.self_attn.rotary_emb.inv_freq": "pytorch_model-00022-of-00027.bin",
637
+ "model.layers.65.self_attn.v_proj.weight": "pytorch_model-00022-of-00027.bin",
638
+ "model.layers.66.input_layernorm.weight": "pytorch_model-00023-of-00027.bin",
639
+ "model.layers.66.mlp.down_proj.weight": "pytorch_model-00023-of-00027.bin",
640
+ "model.layers.66.mlp.gate_proj.weight": "pytorch_model-00023-of-00027.bin",
641
+ "model.layers.66.mlp.up_proj.weight": "pytorch_model-00023-of-00027.bin",
642
+ "model.layers.66.post_attention_layernorm.weight": "pytorch_model-00023-of-00027.bin",
643
+ "model.layers.66.self_attn.k_proj.weight": "pytorch_model-00023-of-00027.bin",
644
+ "model.layers.66.self_attn.o_proj.weight": "pytorch_model-00023-of-00027.bin",
645
+ "model.layers.66.self_attn.q_proj.weight": "pytorch_model-00023-of-00027.bin",
646
+ "model.layers.66.self_attn.rotary_emb.inv_freq": "pytorch_model-00023-of-00027.bin",
647
+ "model.layers.66.self_attn.v_proj.weight": "pytorch_model-00023-of-00027.bin",
648
+ "model.layers.67.input_layernorm.weight": "pytorch_model-00023-of-00027.bin",
649
+ "model.layers.67.mlp.down_proj.weight": "pytorch_model-00023-of-00027.bin",
650
+ "model.layers.67.mlp.gate_proj.weight": "pytorch_model-00023-of-00027.bin",
651
+ "model.layers.67.mlp.up_proj.weight": "pytorch_model-00023-of-00027.bin",
652
+ "model.layers.67.post_attention_layernorm.weight": "pytorch_model-00023-of-00027.bin",
653
+ "model.layers.67.self_attn.k_proj.weight": "pytorch_model-00023-of-00027.bin",
654
+ "model.layers.67.self_attn.o_proj.weight": "pytorch_model-00023-of-00027.bin",
655
+ "model.layers.67.self_attn.q_proj.weight": "pytorch_model-00023-of-00027.bin",
656
+ "model.layers.67.self_attn.rotary_emb.inv_freq": "pytorch_model-00023-of-00027.bin",
657
+ "model.layers.67.self_attn.v_proj.weight": "pytorch_model-00023-of-00027.bin",
658
+ "model.layers.68.input_layernorm.weight": "pytorch_model-00024-of-00027.bin",
659
+ "model.layers.68.mlp.down_proj.weight": "pytorch_model-00024-of-00027.bin",
660
+ "model.layers.68.mlp.gate_proj.weight": "pytorch_model-00023-of-00027.bin",
661
+ "model.layers.68.mlp.up_proj.weight": "pytorch_model-00024-of-00027.bin",
662
+ "model.layers.68.post_attention_layernorm.weight": "pytorch_model-00024-of-00027.bin",
663
+ "model.layers.68.self_attn.k_proj.weight": "pytorch_model-00023-of-00027.bin",
664
+ "model.layers.68.self_attn.o_proj.weight": "pytorch_model-00023-of-00027.bin",
665
+ "model.layers.68.self_attn.q_proj.weight": "pytorch_model-00023-of-00027.bin",
666
+ "model.layers.68.self_attn.rotary_emb.inv_freq": "pytorch_model-00023-of-00027.bin",
667
+ "model.layers.68.self_attn.v_proj.weight": "pytorch_model-00023-of-00027.bin",
668
+ "model.layers.69.input_layernorm.weight": "pytorch_model-00024-of-00027.bin",
669
+ "model.layers.69.mlp.down_proj.weight": "pytorch_model-00024-of-00027.bin",
670
+ "model.layers.69.mlp.gate_proj.weight": "pytorch_model-00024-of-00027.bin",
671
+ "model.layers.69.mlp.up_proj.weight": "pytorch_model-00024-of-00027.bin",
672
+ "model.layers.69.post_attention_layernorm.weight": "pytorch_model-00024-of-00027.bin",
673
+ "model.layers.69.self_attn.k_proj.weight": "pytorch_model-00024-of-00027.bin",
674
+ "model.layers.69.self_attn.o_proj.weight": "pytorch_model-00024-of-00027.bin",
675
+ "model.layers.69.self_attn.q_proj.weight": "pytorch_model-00024-of-00027.bin",
676
+ "model.layers.69.self_attn.rotary_emb.inv_freq": "pytorch_model-00024-of-00027.bin",
677
+ "model.layers.69.self_attn.v_proj.weight": "pytorch_model-00024-of-00027.bin",
678
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00003-of-00027.bin",
679
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00003-of-00027.bin",
680
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00003-of-00027.bin",
681
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00003-of-00027.bin",
682
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00003-of-00027.bin",
683
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00003-of-00027.bin",
684
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00003-of-00027.bin",
685
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00003-of-00027.bin",
686
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00027.bin",
687
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00003-of-00027.bin",
688
+ "model.layers.70.input_layernorm.weight": "pytorch_model-00024-of-00027.bin",
689
+ "model.layers.70.mlp.down_proj.weight": "pytorch_model-00024-of-00027.bin",
690
+ "model.layers.70.mlp.gate_proj.weight": "pytorch_model-00024-of-00027.bin",
691
+ "model.layers.70.mlp.up_proj.weight": "pytorch_model-00024-of-00027.bin",
692
+ "model.layers.70.post_attention_layernorm.weight": "pytorch_model-00024-of-00027.bin",
693
+ "model.layers.70.self_attn.k_proj.weight": "pytorch_model-00024-of-00027.bin",
694
+ "model.layers.70.self_attn.o_proj.weight": "pytorch_model-00024-of-00027.bin",
695
+ "model.layers.70.self_attn.q_proj.weight": "pytorch_model-00024-of-00027.bin",
696
+ "model.layers.70.self_attn.rotary_emb.inv_freq": "pytorch_model-00024-of-00027.bin",
697
+ "model.layers.70.self_attn.v_proj.weight": "pytorch_model-00024-of-00027.bin",
698
+ "model.layers.71.input_layernorm.weight": "pytorch_model-00025-of-00027.bin",
699
+ "model.layers.71.mlp.down_proj.weight": "pytorch_model-00025-of-00027.bin",
700
+ "model.layers.71.mlp.gate_proj.weight": "pytorch_model-00024-of-00027.bin",
701
+ "model.layers.71.mlp.up_proj.weight": "pytorch_model-00025-of-00027.bin",
702
+ "model.layers.71.post_attention_layernorm.weight": "pytorch_model-00025-of-00027.bin",
703
+ "model.layers.71.self_attn.k_proj.weight": "pytorch_model-00024-of-00027.bin",
704
+ "model.layers.71.self_attn.o_proj.weight": "pytorch_model-00024-of-00027.bin",
705
+ "model.layers.71.self_attn.q_proj.weight": "pytorch_model-00024-of-00027.bin",
706
+ "model.layers.71.self_attn.rotary_emb.inv_freq": "pytorch_model-00024-of-00027.bin",
707
+ "model.layers.71.self_attn.v_proj.weight": "pytorch_model-00024-of-00027.bin",
708
+ "model.layers.72.input_layernorm.weight": "pytorch_model-00025-of-00027.bin",
709
+ "model.layers.72.mlp.down_proj.weight": "pytorch_model-00025-of-00027.bin",
710
+ "model.layers.72.mlp.gate_proj.weight": "pytorch_model-00025-of-00027.bin",
711
+ "model.layers.72.mlp.up_proj.weight": "pytorch_model-00025-of-00027.bin",
712
+ "model.layers.72.post_attention_layernorm.weight": "pytorch_model-00025-of-00027.bin",
713
+ "model.layers.72.self_attn.k_proj.weight": "pytorch_model-00025-of-00027.bin",
714
+ "model.layers.72.self_attn.o_proj.weight": "pytorch_model-00025-of-00027.bin",
715
+ "model.layers.72.self_attn.q_proj.weight": "pytorch_model-00025-of-00027.bin",
716
+ "model.layers.72.self_attn.rotary_emb.inv_freq": "pytorch_model-00025-of-00027.bin",
717
+ "model.layers.72.self_attn.v_proj.weight": "pytorch_model-00025-of-00027.bin",
718
+ "model.layers.73.input_layernorm.weight": "pytorch_model-00025-of-00027.bin",
719
+ "model.layers.73.mlp.down_proj.weight": "pytorch_model-00025-of-00027.bin",
720
+ "model.layers.73.mlp.gate_proj.weight": "pytorch_model-00025-of-00027.bin",
721
+ "model.layers.73.mlp.up_proj.weight": "pytorch_model-00025-of-00027.bin",
722
+ "model.layers.73.post_attention_layernorm.weight": "pytorch_model-00025-of-00027.bin",
723
+ "model.layers.73.self_attn.k_proj.weight": "pytorch_model-00025-of-00027.bin",
724
+ "model.layers.73.self_attn.o_proj.weight": "pytorch_model-00025-of-00027.bin",
725
+ "model.layers.73.self_attn.q_proj.weight": "pytorch_model-00025-of-00027.bin",
726
+ "model.layers.73.self_attn.rotary_emb.inv_freq": "pytorch_model-00025-of-00027.bin",
727
+ "model.layers.73.self_attn.v_proj.weight": "pytorch_model-00025-of-00027.bin",
728
+ "model.layers.74.input_layernorm.weight": "pytorch_model-00026-of-00027.bin",
729
+ "model.layers.74.mlp.down_proj.weight": "pytorch_model-00026-of-00027.bin",
730
+ "model.layers.74.mlp.gate_proj.weight": "pytorch_model-00025-of-00027.bin",
731
+ "model.layers.74.mlp.up_proj.weight": "pytorch_model-00026-of-00027.bin",
732
+ "model.layers.74.post_attention_layernorm.weight": "pytorch_model-00026-of-00027.bin",
733
+ "model.layers.74.self_attn.k_proj.weight": "pytorch_model-00025-of-00027.bin",
734
+ "model.layers.74.self_attn.o_proj.weight": "pytorch_model-00025-of-00027.bin",
735
+ "model.layers.74.self_attn.q_proj.weight": "pytorch_model-00025-of-00027.bin",
736
+ "model.layers.74.self_attn.rotary_emb.inv_freq": "pytorch_model-00025-of-00027.bin",
737
+ "model.layers.74.self_attn.v_proj.weight": "pytorch_model-00025-of-00027.bin",
738
+ "model.layers.75.input_layernorm.weight": "pytorch_model-00026-of-00027.bin",
739
+ "model.layers.75.mlp.down_proj.weight": "pytorch_model-00026-of-00027.bin",
740
+ "model.layers.75.mlp.gate_proj.weight": "pytorch_model-00026-of-00027.bin",
741
+ "model.layers.75.mlp.up_proj.weight": "pytorch_model-00026-of-00027.bin",
742
+ "model.layers.75.post_attention_layernorm.weight": "pytorch_model-00026-of-00027.bin",
743
+ "model.layers.75.self_attn.k_proj.weight": "pytorch_model-00026-of-00027.bin",
744
+ "model.layers.75.self_attn.o_proj.weight": "pytorch_model-00026-of-00027.bin",
745
+ "model.layers.75.self_attn.q_proj.weight": "pytorch_model-00026-of-00027.bin",
746
+ "model.layers.75.self_attn.rotary_emb.inv_freq": "pytorch_model-00026-of-00027.bin",
747
+ "model.layers.75.self_attn.v_proj.weight": "pytorch_model-00026-of-00027.bin",
748
+ "model.layers.76.input_layernorm.weight": "pytorch_model-00026-of-00027.bin",
749
+ "model.layers.76.mlp.down_proj.weight": "pytorch_model-00026-of-00027.bin",
750
+ "model.layers.76.mlp.gate_proj.weight": "pytorch_model-00026-of-00027.bin",
751
+ "model.layers.76.mlp.up_proj.weight": "pytorch_model-00026-of-00027.bin",
752
+ "model.layers.76.post_attention_layernorm.weight": "pytorch_model-00026-of-00027.bin",
753
+ "model.layers.76.self_attn.k_proj.weight": "pytorch_model-00026-of-00027.bin",
754
+ "model.layers.76.self_attn.o_proj.weight": "pytorch_model-00026-of-00027.bin",
755
+ "model.layers.76.self_attn.q_proj.weight": "pytorch_model-00026-of-00027.bin",
756
+ "model.layers.76.self_attn.rotary_emb.inv_freq": "pytorch_model-00026-of-00027.bin",
757
+ "model.layers.76.self_attn.v_proj.weight": "pytorch_model-00026-of-00027.bin",
758
+ "model.layers.77.input_layernorm.weight": "pytorch_model-00027-of-00027.bin",
759
+ "model.layers.77.mlp.down_proj.weight": "pytorch_model-00027-of-00027.bin",
760
+ "model.layers.77.mlp.gate_proj.weight": "pytorch_model-00026-of-00027.bin",
761
+ "model.layers.77.mlp.up_proj.weight": "pytorch_model-00027-of-00027.bin",
762
+ "model.layers.77.post_attention_layernorm.weight": "pytorch_model-00027-of-00027.bin",
763
+ "model.layers.77.self_attn.k_proj.weight": "pytorch_model-00026-of-00027.bin",
764
+ "model.layers.77.self_attn.o_proj.weight": "pytorch_model-00026-of-00027.bin",
765
+ "model.layers.77.self_attn.q_proj.weight": "pytorch_model-00026-of-00027.bin",
766
+ "model.layers.77.self_attn.rotary_emb.inv_freq": "pytorch_model-00026-of-00027.bin",
767
+ "model.layers.77.self_attn.v_proj.weight": "pytorch_model-00026-of-00027.bin",
768
+ "model.layers.78.input_layernorm.weight": "pytorch_model-00027-of-00027.bin",
769
+ "model.layers.78.mlp.down_proj.weight": "pytorch_model-00027-of-00027.bin",
770
+ "model.layers.78.mlp.gate_proj.weight": "pytorch_model-00027-of-00027.bin",
771
+ "model.layers.78.mlp.up_proj.weight": "pytorch_model-00027-of-00027.bin",
772
+ "model.layers.78.post_attention_layernorm.weight": "pytorch_model-00027-of-00027.bin",
773
+ "model.layers.78.self_attn.k_proj.weight": "pytorch_model-00027-of-00027.bin",
774
+ "model.layers.78.self_attn.o_proj.weight": "pytorch_model-00027-of-00027.bin",
775
+ "model.layers.78.self_attn.q_proj.weight": "pytorch_model-00027-of-00027.bin",
776
+ "model.layers.78.self_attn.rotary_emb.inv_freq": "pytorch_model-00027-of-00027.bin",
777
+ "model.layers.78.self_attn.v_proj.weight": "pytorch_model-00027-of-00027.bin",
778
+ "model.layers.79.input_layernorm.weight": "pytorch_model-00027-of-00027.bin",
779
+ "model.layers.79.mlp.down_proj.weight": "pytorch_model-00027-of-00027.bin",
780
+ "model.layers.79.mlp.gate_proj.weight": "pytorch_model-00027-of-00027.bin",
781
+ "model.layers.79.mlp.up_proj.weight": "pytorch_model-00027-of-00027.bin",
782
+ "model.layers.79.post_attention_layernorm.weight": "pytorch_model-00027-of-00027.bin",
783
+ "model.layers.79.self_attn.k_proj.weight": "pytorch_model-00027-of-00027.bin",
784
+ "model.layers.79.self_attn.o_proj.weight": "pytorch_model-00027-of-00027.bin",
785
+ "model.layers.79.self_attn.q_proj.weight": "pytorch_model-00027-of-00027.bin",
786
+ "model.layers.79.self_attn.rotary_emb.inv_freq": "pytorch_model-00027-of-00027.bin",
787
+ "model.layers.79.self_attn.v_proj.weight": "pytorch_model-00027-of-00027.bin",
788
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00004-of-00027.bin",
789
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00004-of-00027.bin",
790
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00003-of-00027.bin",
791
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00004-of-00027.bin",
792
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00004-of-00027.bin",
793
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00003-of-00027.bin",
794
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00003-of-00027.bin",
795
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00003-of-00027.bin",
796
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00027.bin",
797
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00003-of-00027.bin",
798
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00004-of-00027.bin",
799
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00004-of-00027.bin",
800
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00004-of-00027.bin",
801
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00004-of-00027.bin",
802
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00004-of-00027.bin",
803
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00004-of-00027.bin",
804
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00004-of-00027.bin",
805
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00004-of-00027.bin",
806
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00027.bin",
807
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00004-of-00027.bin",
808
+ "model.norm.weight": "pytorch_model-00027-of-00027.bin"
809
+ }
810
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "model_max_length": 1000000000000000019884624838656,
22
+ "pad_token": null,
23
+ "sp_model_kwargs": {},
24
+ "tokenizer_class": "LlamaTokenizer",
25
+ "unk_token": {
26
+ "__type": "AddedToken",
27
+ "content": "",
28
+ "lstrip": false,
29
+ "normalized": true,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }