File size: 14,541 Bytes
4e6fc5a
 
 
 
 
 
 
 
 
2ae6192
4e6fc5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01c5310
4e6fc5a
 
 
 
 
18fea53
4e6fc5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb7cb95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7056ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb7cb95
4e6fc5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
---
language:
- en
library_name: transformers
license: apache-2.0
tags:
- gpt
- llm
- multimodal large language model
- ocr
thumbnail: >-
  https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
pipeline_tag: text-generation
---
# Model Card
The H2OVL-Mississippi-2B is a high-performing, general-purpose vision-language model developed by H2O.ai to handle a wide range of multimodal tasks. This model, with 2 billion parameters, excels in tasks such as image captioning, visual question answering (VQA), and document understanding, while maintaining efficiency for real-world applications.

The Mississippi-2B model builds on the strong foundations of our H2O-Danube language models, now extended to integrate vision and language tasks. It competes with larger models across various benchmarks, offering a versatile and scalable solution for document AI, OCR, and multimodal reasoning.


<div align="center">
  <img src="./assets/Mississippi-2B_benchmarks.png" alt="Mississippi-2B Benchmarks" width="600"/>
</div>



## Key Features:

- 2 Billion Parameters: Balance between performance and efficiency, making it suitable for document processing, OCR, VQA, and more.
- Optimized for Vision-Language Tasks: Achieves high performance across a wide range of applications, including document AI, OCR, and multimodal reasoning.
- Comprehensive Dataset: Trained on 17M image-text pairs, ensuring broad coverage and strong task generalization.

## Usage

### Install dependencies:
```bash
pip install transformers torch torchvision einops timm peft sentencepiece
```

If you have ampere GPUs, install flash-attention to speed up inference:
```bash
pip install flash_attn
```

### Sample demo:

```python
import torch
from transformers import AutoModel, AutoTokenizer


# Set up the model and tokenizer
model_path = 'h2oai/h2ovl-mississippi-2b'
model = AutoModel.from_pretrained(
    model_path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
generation_config = dict(max_new_tokens=1024, do_sample=True)


# pure-text conversation
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')


# Example for single image
image_file = './examples/image1.jpg'
question = '<image>\nPlease describe the image in detail.'
response, history = model.chat(tokenizer, image_file, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')


# Example for multiple images - multiround conversation
image_files = ['./examples/image1.jpg', './examples/image2.jpg']
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the Image-1 and Image-2 in detail.'
response, history = model.chat(tokenizer, image_files, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, image_files, question, generation_config=generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')


```

## Benchmarks

### Performance Comparison of Similar Sized Models Across Multiple Benchmarks - OpenVLM Leaderboard

| **Models**                 | **Params (B)** | **Avg. Score** | **MMBench** | **MMStar** | **MMMU<sub>VAL</sub>** | **Math Vista** | **Hallusion** | **AI2D<sub>TEST</sub>** | **OCRBench** | **MMVet** |
|----------------------------|----------------|----------------|-------------|------------|-----------------------|----------------|---------------|-------------------------|--------------|-----------|
| Qwen2-VL-2B                | 2.1            | **57.2**       | **72.2**    | 47.5       | 42.2                  | 47.8           | **42.4**      | 74.7                    | **797**      | **51.5**  |
| **H2OVL-Mississippi-2B**    | 2.1            | 54.4           | 64.8        | 49.6       | 35.2                  | **56.8**       | 36.4          | 69.9                    | 782          | 44.7      |
| InternVL2-2B               | 2.1            | 53.9           | 69.6        | **49.8**   | 36.3                  | 46.0           | 38.0          | 74.1                    | 781          | 39.7      |
| Phi-3-Vision               | 4.2            | 53.6           | 65.2        | 47.7       | **46.1**              | 44.6           | 39.0          | **78.4**                 | 637          | 44.1      |
| MiniMonkey                 | 2.2            | 52.7           | 68.9        | 48.1       | 35.7                  | 45.3           | 30.9          | 73.7                    | **794**      | 39.8      |
| MiniCPM-V-2                | 2.8            | 47.9           | 65.8        | 39.1       | 38.2                  | 39.8           | 36.1          | 62.9                    | 605          | 41.0      |
| InternVL2-1B               | 0.8            | 48.3           | 59.7        | 45.6       | 36.7                  | 39.4           | 34.3          | 63.8                    | 755          | 31.5      |
| PaliGemma-3B-mix-448       | 2.9            | 46.5           | 65.6        | 48.3       | 34.9                  | 28.7           | 32.2          | 68.3                    | 614          | 33.1      |
| **H2OVL-Mississippi-0.8B** | 0.8            | 43.5           | 47.7        | 39.1       | 34.0                  | 39.0           | 29.6          | 53.6                    | 751          | 30.0      |
| DeepSeek-VL-1.3B           | 2.0            | 39.6           | 63.8        | 39.9       | 33.8                  | 29.8           | 27.6          | 51.5                    | 413          | 29.2      |


## Prompt Engineering for JSON Extraction

### Overview

This guide demonstrates how to create prompts for extracting information and converting it into structured JSON outputs. It starts with basic examples and progresses to more complex JSON structures, including handling data from images of tables and charts. The objective is to help users design effective prompts that can be used in various applications, such as natural language processing, chatbots, or data extraction from visual inputs.

### Table of Contents

1. [Getting Started](#getting-started)
2. [Extracting Simple Information](#example-1-extracting-simple-information-from-an-image)
3. [Extracting Nested Information](#example-2-extracting-nested-information-from-an-image)
4. [Extracting Lists and Arrays](#example-3-extracting-lists-and-arrays-from-an-image)
5. [Extracting Tables](#example-4-extracting-table-data-from-an-image)
6. [Extracting Charts](#example-5-extracting-chart-data-from-an-image)
7. [Best Practices](#best-practices)

---

### Getting Started

To get started with JSON extraction from images, it's essential to have a clear understanding of the visual content you want to extract and the structure of the desired JSON output. The following examples will guide you through crafting prompts to achieve this.


#### Example 1: Extracting Simple Information from an Image

**Hypothetical Scenario:**
You have an image of a form that contains basic details like "Name," "Date of Birth," and "Address."

**Prompt:**
```
Extract the details from the form image and structure them into JSON format:
{
    "name": "",
    "date_of_birth": "",
    "address": ""
}
```

**Expected Output:**
```json
{
  "name": "John Doe",
  "date_of_birth": "1990-01-01",
  "address": "1234 Elm Street, Springfield"
}
```

#### Example 2: Extracting Nested Information from an Image

**Hypothetical Scenario:**
You have an image of a form that contains detailed personal information, including contact details and emergency contacts.

**Prompt:**
```
Extract the information from the form and format it as follows:
{
    "personal_details": {
        "name": "",
        "age": 0,
        "gender": ""
    },
    "contact": {
        "phone": "",
        "email": ""
    },
    "emergency_contact": {
        "name": "",
        "relation": "",
        "phone": ""
    }
}
```

**Expected Output:**
```json
{
  "personal_details": {
    "name": "Sarah Connor",
    "age": 35,
    "gender": "Female"
  },
  "contact": {
    "phone": "555-1234",
    "email": "[email protected]"
  },
  "emergency_contact": {
    "name": "Kyle Reese",
    "relation": "Friend",
    "phone": "555-5678"
  }
}
```


#### Example 3: Extracting Lists and Arrays from an Image

**Hypothetical Scenario:**
You have an image of a schedule that lists several events, their times, and locations.

**Prompt:**
```
Extract the event details from the schedule image and structure them into JSON:
{
    "events": [
        {
            "name": "",
            "time": "",
            "location": ""
        }
    ]
}
```

**Expected Output:**
```json
{
  "events": [
    {
      "name": "Morning Meeting",
      "time": "09:00 AM",
      "location": "Conference Room 1"
    },
    {
      "name": "Lunch Break",
      "time": "12:00 PM",
      "location": "Cafeteria"
    },
    {
      "name": "Project Update",
      "time": "02:00 PM",
      "location": "Conference Room 2"
    }
  ]
}
```


#### Example 4: Extracting Table Data from an Image

Images of tables often contain structured data that needs to be parsed and converted to JSON. The following example demonstrates how to handle tabular data extraction.

**Hypothetical Scenario:**
You have an image of a table listing product names, prices, and quantities.

**Prompt:**
```
Extract the data from the table image and format it as JSON:
{
    "products": [
        {
            "product_name": "",
            "price": "",
            "quantity": 0
        }
    ]
}
```

**Expected Output:**
```json
{
  "products": [
    {
      "product_name": "Apples",
      "price": "$2",
      "quantity": 10
    },
    {
      "product_name": "Bananas",
      "price": "$1",
      "quantity": 20
    },
    {
      "product_name": "Oranges",
      "price": "$3",
      "quantity": 15
    }
  ]
}
```


#### Example 5: Extracting Chart Data from an Image

Charts include metadata and data points that need to be accurately extracted. Here's how to structure prompts to extract chart data from images.

**Hypothetical Scenario:**
You have an image of a bar chart that shows monthly sales figures.

**Prompt:**
```
Extract the details of the bar chart from the image, including the title, axis labels, and data points and format it as JSON:
{
    "chart": {
        "title": "",
        "x_axis": "",
        "y_axis": "",
        "data_points": [
            {
                "label": "",
                "value": 0
            }
        ]
    }
}
```

**Expected Output:**
```json
{
  "chart": {
    "title": "Monthly Sales Report",
    "x_axis": "Months",
    "y_axis": "Sales (in $)",
    "data_points": [
      {
        "label": "January",
        "value": 500
      },
      {
        "label": "February",
        "value": 600
      },
      {
        "label": "March",
        "value": 700
      }
    ]
  }
}
```

## Best Practices

1. **Be Explicit**: Clearly define the desired keys and structure in your prompt to avoid ambiguity.
2. **Use Examples**: Provide sample outputs so that the system can understand the expected format.
3. **Anticipate Variations**: Consider possible variations in the visual data and ensure the prompt can accommodate them.
4. **Start Simple**: Begin with simple structures, and progressively increase complexity as needed.
5. **Test and Iterate**: Refine your prompts through testing to ensure accuracy and consistency in outputs.



## Acknowledgments

We would like to express our gratitude to the [InternVL team at OpenGVLab](https://github.com/OpenGVLab/InternVL) for their research and codebases, upon which we have built and expanded. We also acknowledge the work of the [LLaVA team](https://github.com/haotian-liu/LLaVA) and the [Monkey team](https://github.com/Yuliang-Liu/Monkey/tree/main/project/mini_monkey) for their insights and techniques used in improving multimodal models.

## Disclaimer

Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.

- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.

By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.