|
import sys |
|
|
|
sys.path.append("./src") |
|
|
|
from kidney_classification.pipeline.prediction import PredictionPipeline |
|
from kidney_classification.utils.common import decodeImage |
|
from flask_cors import CORS, cross_origin |
|
import os |
|
from flask import Flask, request, jsonify, render_template |
|
|
|
|
|
os.putenv("LANG", "en_US.UTF-8") |
|
os.putenv("LC_ALL", "en_US.UTF-8") |
|
|
|
app = Flask(__name__) |
|
CORS(app) |
|
|
|
|
|
class ClientApp: |
|
def __init__(self): |
|
self.filename = "inputImage.jpg" |
|
self.classifier = PredictionPipeline(self.filename) |
|
|
|
|
|
@app.route("/", methods=["GET"]) |
|
@cross_origin() |
|
def home(): |
|
return render_template("index.html") |
|
|
|
|
|
@app.route("/train", methods=["GET", "POST"]) |
|
@cross_origin() |
|
def trainRoute(): |
|
os.system("dvc repro") |
|
return "Training done successfully!" |
|
|
|
|
|
@app.route("/predict", methods=["POST"]) |
|
@cross_origin() |
|
def predictRoute(): |
|
image = request.json["image"] |
|
decodeImage(image, clApp.filename) |
|
result = clApp.classifier.predict() |
|
return jsonify(result) |
|
|
|
|
|
if __name__ == "__main__": |
|
clApp = ClientApp() |
|
|
|
app.run(host="0.0.0.0", port=8080) |
|
|