File size: 5,191 Bytes
586c223
a5c27f1
 
586c223
 
 
 
 
a5c27f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586c223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5c27f1
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
---
language:
- en
license: apache-2.0
datasets:
- OpenAssistant/oasst_top1_2023-08-25
pipeline_tag: text-generation
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T
model-index:
- name: TinyLlama-1.1B-step-2T-lr-5-5ep-oasst1-top1-instruct-V1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 31.06
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-step-2T-lr-5-5ep-oasst1-top1-instruct-V1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 55.02
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-step-2T-lr-5-5ep-oasst1-top1-instruct-V1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 26.41
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-step-2T-lr-5-5ep-oasst1-top1-instruct-V1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 35.08
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-step-2T-lr-5-5ep-oasst1-top1-instruct-V1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 58.01
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-step-2T-lr-5-5ep-oasst1-top1-instruct-V1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 1.59
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-step-2T-lr-5-5ep-oasst1-top1-instruct-V1
      name: Open LLM Leaderboard
---

TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T finetuned using OpenAssistant/oasst_top1_2023-08-25 dataset. 

Trained for 5 epochs using Qlora. Adapter is merged.

SFT code:
https://github.com/habanoz/qlora.git

Command used:
```bash
accelerate launch $BASE_DIR/qlora/train.py \
  --model_name_or_path $BASE_MODEL \
  --working_dir $BASE_DIR/$OUTPUT_NAME-checkpoints \
  --output_dir $BASE_DIR/$OUTPUT_NAME-peft \
  --merged_output_dir $BASE_DIR/$OUTPUT_NAME \
  --final_output_dir $BASE_DIR/$OUTPUT_NAME-final \
  --num_train_epochs 5 \
  --logging_steps 1 \
  --save_strategy steps \
  --save_steps 75 \
  --save_total_limit 2 \
  --data_seed 11422 \
  --evaluation_strategy steps \
  --per_device_eval_batch_size 4 \
  --eval_dataset_size 0.01 \
  --eval_steps 75 \
  --max_new_tokens 1024 \
  --dataloader_num_workers 3 \
  --logging_strategy steps \
  --do_train \
  --do_eval \
  --lora_r 64 \
  --lora_alpha 16 \
  --lora_modules all \
  --bits 4 \
  --double_quant \
  --quant_type nf4 \
  --lr_scheduler_type constant \
  --dataset oasst1-top1 \
  --dataset_format oasst1 \
  --model_max_len 1024 \
  --per_device_train_batch_size 4 \
  --gradient_accumulation_steps 4 \
  --learning_rate 1e-5 \
  --adam_beta2 0.999 \
  --max_grad_norm 0.3 \
  --lora_dropout 0.0 \
  --weight_decay 0.0 \
  --seed 11422 \
  --gradient_checkpointing \
  --use_flash_attention_2 \
  --ddp_find_unused_parameters False
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_habanoz__TinyLlama-1.1B-step-2T-lr-5-5ep-oasst1-top1-instruct-V1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |34.53|
|AI2 Reasoning Challenge (25-Shot)|31.06|
|HellaSwag (10-Shot)              |55.02|
|MMLU (5-Shot)                    |26.41|
|TruthfulQA (0-shot)              |35.08|
|Winogrande (5-shot)              |58.01|
|GSM8k (5-shot)                   | 1.59|