File size: 5,191 Bytes
586c223 a5c27f1 586c223 a5c27f1 586c223 a5c27f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
---
language:
- en
license: apache-2.0
datasets:
- OpenAssistant/oasst_top1_2023-08-25
pipeline_tag: text-generation
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T
model-index:
- name: TinyLlama-1.1B-step-2T-lr-5-5ep-oasst1-top1-instruct-V1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 31.06
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-step-2T-lr-5-5ep-oasst1-top1-instruct-V1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 55.02
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-step-2T-lr-5-5ep-oasst1-top1-instruct-V1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 26.41
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-step-2T-lr-5-5ep-oasst1-top1-instruct-V1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 35.08
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-step-2T-lr-5-5ep-oasst1-top1-instruct-V1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 58.01
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-step-2T-lr-5-5ep-oasst1-top1-instruct-V1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.59
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-step-2T-lr-5-5ep-oasst1-top1-instruct-V1
name: Open LLM Leaderboard
---
TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T finetuned using OpenAssistant/oasst_top1_2023-08-25 dataset.
Trained for 5 epochs using Qlora. Adapter is merged.
SFT code:
https://github.com/habanoz/qlora.git
Command used:
```bash
accelerate launch $BASE_DIR/qlora/train.py \
--model_name_or_path $BASE_MODEL \
--working_dir $BASE_DIR/$OUTPUT_NAME-checkpoints \
--output_dir $BASE_DIR/$OUTPUT_NAME-peft \
--merged_output_dir $BASE_DIR/$OUTPUT_NAME \
--final_output_dir $BASE_DIR/$OUTPUT_NAME-final \
--num_train_epochs 5 \
--logging_steps 1 \
--save_strategy steps \
--save_steps 75 \
--save_total_limit 2 \
--data_seed 11422 \
--evaluation_strategy steps \
--per_device_eval_batch_size 4 \
--eval_dataset_size 0.01 \
--eval_steps 75 \
--max_new_tokens 1024 \
--dataloader_num_workers 3 \
--logging_strategy steps \
--do_train \
--do_eval \
--lora_r 64 \
--lora_alpha 16 \
--lora_modules all \
--bits 4 \
--double_quant \
--quant_type nf4 \
--lr_scheduler_type constant \
--dataset oasst1-top1 \
--dataset_format oasst1 \
--model_max_len 1024 \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--learning_rate 1e-5 \
--adam_beta2 0.999 \
--max_grad_norm 0.3 \
--lora_dropout 0.0 \
--weight_decay 0.0 \
--seed 11422 \
--gradient_checkpointing \
--use_flash_attention_2 \
--ddp_find_unused_parameters False
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_habanoz__TinyLlama-1.1B-step-2T-lr-5-5ep-oasst1-top1-instruct-V1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |34.53|
|AI2 Reasoning Challenge (25-Shot)|31.06|
|HellaSwag (10-Shot) |55.02|
|MMLU (5-Shot) |26.41|
|TruthfulQA (0-shot) |35.08|
|Winogrande (5-shot) |58.01|
|GSM8k (5-shot) | 1.59|
|