File size: 6,172 Bytes
3f86748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
from torch.utils.data import Dataset
from PIL import Image
import json
from transformers import TrOCRProcessor
import pandas as pd
from sklearn.model_selection import train_test_split
import glob
import torchvision.transforms as transforms
import numpy as np

def prepare_data_frame(root_dir):
    with open(root_dir) as f:
        d = json.load(f)
    filename = [d[i]["word_id"]+ ".png"  for i in range(len(d))]
    text = [d[i]["text"] for i in range(len(d))]
    data = {'filename': filename, 'text': text}
    df = pd.DataFrame(data=data)
    return df


class AphaPenDataset(Dataset):
    def __init__(self, root_dir, df,  processor, transform=None,  max_target_length=128):
        self.root_dir = root_dir
        self.df= df
        # self.filename, self.text = self.prepare_data()
        self.processor = processor
        self.max_target_length = max_target_length
        self.transform = transform

    def __len__(self):
        return len(self.df)

    def __getitem__(self, idx):
        # get file name + text 
        file_name = self.df.filename[idx]
        text = self.df.text[idx]
        # prepare image (i.e. resize + normalize)
        image = Image.open(self.root_dir + file_name).convert("RGB")
        if self.transform is not None:
            image = self.transform(image)
            img=transforms.ToPILImage()(image)
            img.save("/mnt/data1/Datasets/AlphaPen/transformed_images/" + file_name)
        pixel_values = self.processor(image, return_tensors="pt").pixel_values
        # add labels (input_ids) by encoding the text
        labels = self.processor.tokenizer(text, 
                                          padding="max_length", 
                                          max_length=self.max_target_length).input_ids
        # important: make sure that PAD tokens are ignored by the loss function
        labels = [label if label != self.processor.tokenizer.pad_token_id else -100 for label in labels]

        encoding = {"pixel_values": pixel_values.squeeze(), "labels": torch.tensor(labels)}
        return encoding

    def prepare_data(self):
        with open(self.path_json) as f:
            d = json.load(f)
        filename = [d[i]["image_id"]+ ".png"  for i in range(len(d))]
        text = [d[i]["text"] for i in range(len(d))]
        return filename, text


class AlphaPenPhi3Dataset(Dataset):
    def __init__(self, root_dir, dataframe, tokenizer, max_length, image_size):
        self.dataframe = dataframe
        self.tokenizer = tokenizer
        self.tokenizer.padding_side = 'left'
        self.max_length = max_length
        self.root_dir = root_dir
        self.transform = transforms.Compose([
            transforms.Resize((image_size, image_size)),
            transforms.ToTensor()
        ])
        
    def __len__(self):
        return len(self.dataframe)


    def __getitem__(self, idx):
        row = self.dataframe.iloc[idx]
        text = f"<|user|>\n<|image_1|>What is shown in this image?<|end|><|assistant|>\n {row['text']} <|end|>"
        image_path = self.root_dir + row['filename']
        
        # Tokenize text
        encodings = self.tokenizer(text, truncation=True, padding='max_length', max_length=self.max_length)
        
        try:
            # Load and transform image
            image = Image.open(image_path).convert("RGB")
            image = self.image_transform_function(image)
        except (FileNotFoundError, IOError):
            # Skip the sample if the image is not found
            return None
        
        labels = self.tokenizer(row['text'], 
                                          padding="max_length", 
                                          max_length=self.max_length).input_ids
        # important: make sure that PAD tokens are ignored by the loss function
        labels = [label if label != self.tokenizer.pad_token_id else -100 for label in labels]
        encodings['pixel_values'] = image
        encodings['labels'] = labels

        return {key: torch.tensor(val) for key, val in encodings.items()}


    def image_transform_function(self, image):
        image = self.transform(image)
        return image




if __name__ == "__main__":
    json_path = "/mnt/data1/Datasets/OCR/Alphapen/label_check/"
    json_path_b2 = "/mnt/data1/Datasets/OCR/Alphapen/DataBatch2/label_check/"
    root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
    root_dir_b2 = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
    json_files = glob.glob(json_path + "*.json")
    json_files_b2 = glob.glob(json_path_b2 + "*.json")
    root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
    df_list_b1 = [prepare_data_frame(file) for file in json_files]
    df_list_b2 = [prepare_data_frame(file) for file in json_files_b2]
    # df_list = df_list_b1 + df_list_b2
    df_b1 = pd.concat(df_list_b1)
    df_b2 = pd.concat(df_list_b2)
    
    df_b1.to_csv("/mnt/data1/Datasets/AlphaPen/" + "testing_data_b1.csv")
    df_b2.to_csv("/mnt/data1/Datasets/AlphaPen/" + "testing_data_b2.csv")
    # train_df, test_df = train_test_split(df, test_size=0.15)
    # # we reset the indices to start from zero
    # train_df.reset_index(drop=True, inplace=True)
    # test_df.reset_index(drop=True, inplace=True) 
    # processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
    # train_dataset = AphaPenDataset(root_dir=root_dir, df=train_df,  processor=processor)
    # eval_dataset = AphaPenDataset(root_dir=root_dir, df=test_df,  processor=processor)
    # print("Number of training examples:", len(train_dataset))
    # print("Number of validation examples:", len(eval_dataset))

    # encoding = train_dataset[0]
    # for k,v in encoding.items():
    #     print(k, v.shape)

    # image = Image.open(train_dataset.root_dir + df.filename[0]).convert("RGB")
    # print('Label: '+df.text[0])
    # print(image)

    # labels = encoding['labels']
    # print(labels)

    # labels[labels == -100] = processor.tokenizer.pad_token_id
    # label_str = processor.decode(labels, skip_special_tokens=True)
    # print('Decoded Label:', label_str)