File size: 3,111 Bytes
8d6265d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4f9b67
 
 
 
 
8d6265d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6e8b7f
0d1c0f8
c0b10d6
0069e82
1c3df85
873541b
0366e25
0a187b6
22e0023
ef75516
4be7856
c188ad7
2326748
dbd4a91
f4642fe
cdd2a77
c4f9b67
8d6265d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: other
base_model: apple/mobilevit-xx-small
tags:
- generated_from_keras_callback
model-index:
- name: hafizurUMaine/cifar10_m
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# hafizurUMaine/cifar10_m

This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co/apple/mobilevit-xx-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3505
- Train Accuracy: 0.8859
- Validation Loss: 0.6268
- Validation Accuracy: 0.8195
- Epoch: 17

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 400000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 5.5748     | 0.1482         | 3.1655          | 0.4160              | 0     |
| 2.4468     | 0.5135         | 1.7772          | 0.6195              | 1     |
| 1.5927     | 0.6389         | 1.3152          | 0.6770              | 2     |
| 1.2333     | 0.7001         | 1.1226          | 0.7265              | 3     |
| 1.0094     | 0.7334         | 0.9668          | 0.7490              | 4     |
| 0.8748     | 0.7591         | 0.9140          | 0.7510              | 5     |
| 0.7714     | 0.7846         | 0.7881          | 0.7845              | 6     |
| 0.6977     | 0.7999         | 0.8075          | 0.7745              | 7     |
| 0.6524     | 0.8096         | 0.8417          | 0.7675              | 8     |
| 0.5904     | 0.8254         | 0.7763          | 0.7850              | 9     |
| 0.5525     | 0.8321         | 0.7367          | 0.7955              | 10    |
| 0.5083     | 0.8459         | 0.7343          | 0.7990              | 11    |
| 0.4695     | 0.8559         | 0.6768          | 0.8075              | 12    |
| 0.4432     | 0.8615         | 0.6830          | 0.8095              | 13    |
| 0.4125     | 0.8704         | 0.6891          | 0.7980              | 14    |
| 0.3995     | 0.875          | 0.6482          | 0.8155              | 15    |
| 0.3723     | 0.8781         | 0.6653          | 0.8095              | 16    |
| 0.3505     | 0.8859         | 0.6268          | 0.8195              | 17    |


### Framework versions

- Transformers 4.37.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.1