File size: 5,671 Bytes
8d6265d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae7864
 
 
 
 
8d6265d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6e8b7f
0d1c0f8
c0b10d6
0069e82
1c3df85
873541b
0366e25
0a187b6
22e0023
ef75516
4be7856
c188ad7
2326748
dbd4a91
f4642fe
cdd2a77
c4f9b67
965f702
d6103ab
2cdff8b
a3b789e
1b73c2f
6c6ea6b
27c260b
543d69d
db1e9cb
37ba6f0
acc3d4d
372fcc9
8c5ead1
6a0d670
c941575
2ee13b3
d902b85
92f9792
0d04fa3
5a134c6
9e093db
1a88765
b640d67
bd8b621
471fa2c
cf87f93
e865336
529c1d0
8563016
0a34686
0f18afd
9ae7864
8d6265d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
license: other
base_model: apple/mobilevit-xx-small
tags:
- generated_from_keras_callback
model-index:
- name: hafizurUMaine/cifar10_m
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# hafizurUMaine/cifar10_m

This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co/apple/mobilevit-xx-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0748
- Train Accuracy: 0.9743
- Validation Loss: 0.6597
- Validation Accuracy: 0.8575
- Epoch: 49

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 400000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 5.5748     | 0.1482         | 3.1655          | 0.4160              | 0     |
| 2.4468     | 0.5135         | 1.7772          | 0.6195              | 1     |
| 1.5927     | 0.6389         | 1.3152          | 0.6770              | 2     |
| 1.2333     | 0.7001         | 1.1226          | 0.7265              | 3     |
| 1.0094     | 0.7334         | 0.9668          | 0.7490              | 4     |
| 0.8748     | 0.7591         | 0.9140          | 0.7510              | 5     |
| 0.7714     | 0.7846         | 0.7881          | 0.7845              | 6     |
| 0.6977     | 0.7999         | 0.8075          | 0.7745              | 7     |
| 0.6524     | 0.8096         | 0.8417          | 0.7675              | 8     |
| 0.5904     | 0.8254         | 0.7763          | 0.7850              | 9     |
| 0.5525     | 0.8321         | 0.7367          | 0.7955              | 10    |
| 0.5083     | 0.8459         | 0.7343          | 0.7990              | 11    |
| 0.4695     | 0.8559         | 0.6768          | 0.8075              | 12    |
| 0.4432     | 0.8615         | 0.6830          | 0.8095              | 13    |
| 0.4125     | 0.8704         | 0.6891          | 0.7980              | 14    |
| 0.3995     | 0.875          | 0.6482          | 0.8155              | 15    |
| 0.3723     | 0.8781         | 0.6653          | 0.8095              | 16    |
| 0.3505     | 0.8859         | 0.6268          | 0.8195              | 17    |
| 0.3390     | 0.8906         | 0.6243          | 0.8205              | 18    |
| 0.3132     | 0.8967         | 0.6338          | 0.8255              | 19    |
| 0.2879     | 0.9071         | 0.5879          | 0.8380              | 20    |
| 0.2845     | 0.9066         | 0.6004          | 0.8320              | 21    |
| 0.2578     | 0.9141         | 0.6228          | 0.8320              | 22    |
| 0.2521     | 0.9178         | 0.6208          | 0.8295              | 23    |
| 0.2375     | 0.9258         | 0.6051          | 0.8410              | 24    |
| 0.2226     | 0.9243         | 0.6138          | 0.8395              | 25    |
| 0.2139     | 0.9298         | 0.5651          | 0.8455              | 26    |
| 0.2094     | 0.9302         | 0.5881          | 0.8470              | 27    |
| 0.1925     | 0.9385         | 0.6298          | 0.8390              | 28    |
| 0.1806     | 0.9399         | 0.5982          | 0.8450              | 29    |
| 0.1758     | 0.9401         | 0.6139          | 0.8435              | 30    |
| 0.1630     | 0.9449         | 0.6105          | 0.8430              | 31    |
| 0.1566     | 0.9449         | 0.5953          | 0.8490              | 32    |
| 0.1423     | 0.9531         | 0.6246          | 0.8440              | 33    |
| 0.1378     | 0.9545         | 0.6249          | 0.8500              | 34    |
| 0.1379     | 0.9553         | 0.6625          | 0.8415              | 35    |
| 0.1305     | 0.9551         | 0.6035          | 0.8575              | 36    |
| 0.1253     | 0.9581         | 0.6503          | 0.8490              | 37    |
| 0.1149     | 0.9607         | 0.5882          | 0.8585              | 38    |
| 0.1026     | 0.9672         | 0.6130          | 0.8530              | 39    |
| 0.1019     | 0.9660         | 0.6373          | 0.8525              | 40    |
| 0.1038     | 0.9645         | 0.6197          | 0.8570              | 41    |
| 0.0938     | 0.9685         | 0.6239          | 0.8545              | 42    |
| 0.0910     | 0.9688         | 0.6439          | 0.8590              | 43    |
| 0.0869     | 0.9711         | 0.5812          | 0.8640              | 44    |
| 0.0818     | 0.9726         | 0.6692          | 0.8565              | 45    |
| 0.0695     | 0.9799         | 0.6652          | 0.8585              | 46    |
| 0.0756     | 0.9765         | 0.6584          | 0.8570              | 47    |
| 0.0669     | 0.9797         | 0.6542          | 0.8610              | 48    |
| 0.0748     | 0.9743         | 0.6597          | 0.8575              | 49    |


### Framework versions

- Transformers 4.37.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.1