harryb0905 commited on
Commit
3e97385
·
1 Parent(s): 0402fab

Upload DQN Mountain Car trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
MountainCar-v0_dqn_1_million.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72b1b104425640ff44e6ef7fdb5f1f271185a447c262ea3648034b18faa3e059
3
+ size 98851
MountainCar-v0_dqn_1_million/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
MountainCar-v0_dqn_1_million/data ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function DQNPolicy.__init__ at 0x7f833ccacc20>",
8
+ "_build": "<function DQNPolicy._build at 0x7f833ccaccb0>",
9
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7f833ccacd40>",
10
+ "forward": "<function DQNPolicy.forward at 0x7f833ccacdd0>",
11
+ "_predict": "<function DQNPolicy._predict at 0x7f833ccace60>",
12
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f833ccacef0>",
13
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f833ccacf80>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_impl": "<_abc_data object at 0x7f833cd09fc0>"
16
+ },
17
+ "verbose": 1,
18
+ "policy_kwargs": {},
19
+ "observation_space": {
20
+ ":type:": "<class 'gym.spaces.box.Box'>",
21
+ ":serialized:": "gASVhwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsChZRoColDCJqZmb8pXI+9lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsChZRoColDCJqZGT8pXI89lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsChZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsChZRoKolDAgEBlHSUYowKX25wX3JhbmRvbZROdWIu",
22
+ "dtype": "float32",
23
+ "_shape": [
24
+ 2
25
+ ],
26
+ "low": "[-1.2 -0.07]",
27
+ "high": "[0.6 0.07]",
28
+ "bounded_below": "[ True True]",
29
+ "bounded_above": "[ True True]",
30
+ "_np_random": null
31
+ },
32
+ "action_space": {
33
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
34
+ ":serialized:": "gASVRwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAABOiueFF4LrLjn+8a2tSq9m8mS2j+epWw5YSX08eOOyHMpMWBlWQxGDLd6U1cikmtnAETiy+1nenTZ5Nd1/wgB1jkBmBZHon4wz7rydg/+Xc+MIj+5bSW4CPAvNDej1YryrQv0bQCPHCvJjzUBFHBr6eFZKP0h6Il8+IryQ6LSrCzpAAIcCtva6Z3yhGcKyCwZwrFjHBFOXuMw+dWHSMlYLt6WI2LGySTu6V+FFDY7xRMj9Cek1q1ou+gp9ExbdcSBb0lrfuAhtjXIG1L7nGLoHO5XGwMZlN+UM8PmLVCWCWoANrdAVFgEwEJNPrxRJBEJ2dpxazgrU4NI2729UZ/jBtRxd1AVsUJiz6p+U7KXLllr0Yl1jSLYHHL5ptOHsZssJPlBqZnWOREho9suDfSy9GfpDaDVGD0HID3ixtMZNv1rKFFPyQJMrtuPzqqpwQQ2LJkmdPatSrFkDP7ozwj+0YlPv6yOntKhSfi+4Ryruu8WgQRA8jCIREPiP9mB1q3mmrtn0E++uq5N+zyQtdT1LP6zRNd/Vr1ROakBtahJupX/0qaelxducJJLtYZCA1LJuh4YLXuHX4/PYFcA3wVX6rH5Pl0YAOGyONQ4SoBHc2NajNUVV2SiG/DT2RmCOd4UUNN7as/xpEpeVO+xUagDAJ29VbzJeZDoZ6E2I9Y9b9K/aSWMxKmZUqPtW1Q+ZIfMk/2AX5qCO/VQIfeBJUV0hDYOJeOziS+CHsbWy4ovo6IAN/bBasnX5RJW94+q+aYRPDFMPfrKOJsZBKtVG9ZoTUCk2HCJECaWn1+GDcTMmQ/SAuG0hPmNTpzjt8sksk52qUgzNe8F9+/gxKoIrPZQ4sCCLl93XoQJFLZEtDAsjFa+G7o0fYHmxSruJDQUhNNDU3Zexwgf9l/tAGu5bq5+h6k/hSHDzy7qtXZkKRzlcLK1irjlGVzMMDebjruplmkw3/gh/QehYbHWs8XstSir+SziH49Q/NwtWJYQQvHBImJ4BUUg4y2N3WFV6mL2CvkYPF5r2Fo6gZ+z9JNvNcxizET23Qj5R34fijKE+gPdgx5JxI6LoJgQvTIy3oKOL/OUTiSSgH+Oh69uTXKDzgS98v5m2s+DbqZETO/RX5KFlyjfpfefSMdYZ+rupC+w4bpPVuxHxGkGbodoPVUTnwB9wdq/Jnij+fpj1an/+BR4K8HIs96U+9NsOeSsp4/Lqwf6x9nj3LmLuMjlFVDGN3KSpGSq2naEd+npulapEzzbynxRzomU3II33rmyTgfKjFwumdeQfPn8tX6aytZZr4Hoi0aFU0o9T9yOOG64FE/V8wKw8W/4vnC5+qkDTSmxrPykkI+BV5SquR70uK1gt9AW9IVJkauQuCHVhNBfMltMRnBqKJO2cAJ1YBNdHlVKrjK9RzP0fIIgKrgKsyQMQl3XrAdRS7RAVc191xYtc/z69T4DvqwQPI9UVVXyTm8d5F2oe0F+htT5rCQX8r4LtMSkz2yL/b0DOETEAWVfcql1b3gPnyHJJVhAks9dOw2HAew2s+gtI0P9JHAIRoLtbG7ZxBm8jnwViZU0M8/n84tIWuSeYWgW/3XdJPSDah0KC9Dj08DzT+ihNLtYegsIfaNbWXOwaM94+mJK4coCQXNnKlVZ8wH7kYKztBJ059629mVcCFNC3yWKVzCkrWgnq15D3RGkVLM3AysCT+H5c8/e5XWtZvstjHechBoskfLtDVYM4U2A2qUckSs4UeXmaGiNTIvjbkwog+ZlLYFBh/aM778lRB8oIa7IYhgzxLCJKKW7cvD3/K/Aj8XRVR9nQ9SNs/iWCkA6W5gNkYX4Vujj01dNPQP8aYMARs/HsSqUq4mphtFd8j6LS/21CUwrtNviU1jI3UwW7Mb+5W72nbVHQmDwSnvSo48bvRRyND7zU1OfkE7Lo/UmOmusrVrHy5AzvMlaI547SbfrV8BkrfAF5ja/b6NJkmMJsNa3/7TN9VpqhFC67jG/a4faMe/v7vKZGCUM/tGCivw2UL5RKmspLlfcubxRFb5e+e3xk8WEZ7s9BiP96BA6wDJPa19sGgcLQJZ1xcz7Ln/VdL6FToUOdQFh16tzGnwJwwxezeZSUmddm2O+ZSZ2O/b/PToaKraL1S0BcNs/UI/OKN+fiz7IzM3nUC1r/+p6J5JUo7tTdWq9nZblkecmCZc5BEyavmyb7bPvRfRMiBeuGgrBlMHIpkhiR9VaXZMZBTsetvnLy7Vpm4LGSlApK4gutkPECPJnuLgPOEE3qjg8aN47fYlDI2BKoPCsw9xTVYVPf3uyuk3IXAHeX4aO+z7+OkMTS7EdQsUTymx0t/NKEqVlopJCojFWZwyQBHePKNApkvCgtA6y3n4SDjWS5JS/mbIIpdTVp6wLuDXytaIE+GCF9euSYutjzoCCLLIXkiTZ10YQGDoQjHnl+doeYa8cA5VlsANs4OpaiqI4QDjNfqcAlrF9lYJWNx9Hc6CgPKkPk4s6zTtTV3THMYIwTPYc6a3BqmTaTw6GTIF7hKlyRkjRtXYUehKk6iKhg7zxwFpi9e+t5GEvkw+fDPFxTiQNtaLguReoswiKufUMLRvmv08JXKie4IAeNINu/SdribBhTDrn2miWNUrg6eb8vm19KnBnvMoaRZaiZ6/W+tfrshxSjO0+hqmGW0W/kAEzpp6dI2REykGvQ/uj7gvZMxSo/zJvdf10zETGCBCLnGdjHrfYWGp1p4U1jD3ayRGZ+M0pFB6sKpUt40D0xsPD3cv3/GS7+iHVB0aMj1xqBzeMqfgcrcqJyqI5R9ai0VpSHuAsEX517jexem575UUtN5S+ber95oOOtpXa8Ca9ywm4JH0PjS7UuI7lJQv6e3R7hgvfZULj5sGHl17NZVnodxydpIDH2nP1dH+6QmCjjT+KFbuDtTa/gBOPmt0sibmZNzaZkwBmMWytmPbqlPDyE3/8Ij65Qlyqnqdc3Xsv5XUI5b1mRh+e9zTcfaaQeuJuMNYnCehcPNk8mnHI6J3fMnsFVlLGmAJ2JcXyPizpUNZxBohs6t90YxduaYfjMwyGv4agRAK1ERpVeJR8miuVAiPlNhLV7wPI+0VsJsJ73i+/B1OYvkdVkbKWOEPyUXMCtF8Du1ISoMX8djsXiTlHFvIeJs/vNgykFOKImIUGekhUbK2FIXuxgjdJDQJs5HIU5H2XNnHt3H39giebgGYfY4HV7D8xHmA6rU0rJaVBpLKCzW/bYG4iV/ssSPRiqPL0YRPhttJxU6WCZX6Ow4RIiUeiIzazjXdzcH+42l6qyFsphOzidPLqFs14GsSwciXpYHI1mQD9fvT5R0lGKMA3Bvc5RNmAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
35
+ "n": 3,
36
+ "_shape": [],
37
+ "dtype": "int64",
38
+ "_np_random": "RandomState(MT19937)"
39
+ },
40
+ "n_envs": 16,
41
+ "num_timesteps": 1000000,
42
+ "_total_timesteps": 1000000,
43
+ "_num_timesteps_at_start": 0,
44
+ "seed": null,
45
+ "action_noise": null,
46
+ "start_time": 1655569106.8005204,
47
+ "learning_rate": 0.0001,
48
+ "tensorboard_log": null,
49
+ "lr_schedule": {
50
+ ":type:": "<class 'function'>",
51
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
52
+ },
53
+ "_last_obs": {
54
+ ":type:": "<class 'numpy.ndarray'>",
55
+ ":serialized:": "gASVCgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOA5DmwvqsxFjk3hKG+J0AOPB8Smb4aY1U8M22gvtYdJDswB46+mn0pPGv4kr7cgHs8u96ovqGZujsRWaS+345fPPW9pr7vM0s8remvvgvivTspT6y+p8QkO0ntj77DrTI89/efvnfTCDy3Do2+gYZTPAfcjb745VQ8mTmQvsS0QzyUdJRiLg=="
56
+ },
57
+ "_last_episode_starts": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAEBAQEBAQEBAQEBAQEBAQGUdJRiLg=="
60
+ },
61
+ "_last_original_obs": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVCgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOAqkywvog23jk49qW+Y/AUPDi9n748S108brWhvvw2QjsdU5O+5bozPHLUmr6gLII8IsmrvgmkxTuIVau+gCtlPJQXrb4ldVA8NuGyvmACxjuymK2+KmA5O7eClb5vhDw8kz6kvpXaDzzrqpO+xbNdPDeDlL6h6148P1eWvixkTTyUdJRiLg=="
64
+ },
65
+ "_episode_num": 4992,
66
+ "use_sde": false,
67
+ "sde_sample_freq": -1,
68
+ "_current_progress_remaining": 0.0,
69
+ "ep_info_buffer": {
70
+ ":type:": "<class 'collections.deque'>",
71
+ ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0CUZdDA8B+4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUZdBKL877dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUZc/WlMyrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUZc9pRGc4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBMCtA9ndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBKujh1ldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBJPZZjhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBH4oJAudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBGVzIV/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBDv3JxOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBCLMs6JdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBAzpHI7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA/OMVDbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA9m6GxmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA8PWhAXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA6fra/RdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA5BkZrIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA3H7xd6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA1SOzY3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaAzg/C66dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalg00m+kdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalfhddE9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaleDWbw0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalcyFfzCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalbI91U3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalYf4h2XdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalXBP9DQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalVp9JBgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalUFB6a9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalSl3yI6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalRPXTVldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalPcBU70dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalN6gM+edX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalMGHHmzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalKRMewLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalIhyKekdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbKA+pwS8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ/vv0AcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ+XZ5AydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ9B8hLXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ7laKUFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ49HMEBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ3aBZp0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ2C/XXidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ0elsP8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJy3kPtldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJxjriVCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJvxH5JsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJuP3i71dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJsXSBsidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJqiXY16dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJo3rD64dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbublijL0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuafzz3AdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuZGax5cdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuXv6TGHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuWKdhAodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuTgl4TsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuR8MNMHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuQkX1rZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuO+7Dl6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuNwR5C4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuMbm2b5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuKqGUOedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuJKJ2t/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuHU+cH4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuFev6j4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuD28IzFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcS5FPSDzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcS3z+WGAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcS2WpqASdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcS1E3KjjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSzbeuV5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSw/PgNxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSvoePq+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSuX/o7ndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSs5n13/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSrTpgTidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSp9ZzPsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSoKlYU4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSmtyPuHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSk2gnMMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSjCYTkAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcShUBGQTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2+3H7xedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc29lmOENdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc28Hv+fidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc26xxDLKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc25HmRvFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc22dNFjNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc205U96kdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2ziCJ40dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2x9G7SRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2wblzU7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2vH93r2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2tVJcxCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2rzoUzsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2p6QeV+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2oFFDv3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2mUnogWdWUu"
72
+ },
73
+ "ep_success_buffer": {
74
+ ":type:": "<class 'collections.deque'>",
75
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
76
+ },
77
+ "_n_updates": 14844,
78
+ "buffer_size": 1000000,
79
+ "batch_size": 32,
80
+ "learning_starts": 50000,
81
+ "tau": 1.0,
82
+ "gamma": 0.99,
83
+ "gradient_steps": 1,
84
+ "optimize_memory_usage": false,
85
+ "replay_buffer_class": {
86
+ ":type:": "<class 'abc.ABCMeta'>",
87
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
88
+ "__module__": "stable_baselines3.common.buffers",
89
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
90
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f833cd00320>",
91
+ "add": "<function ReplayBuffer.add at 0x7f833cd003b0>",
92
+ "sample": "<function ReplayBuffer.sample at 0x7f833cd00440>",
93
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f833cd004d0>",
94
+ "__abstractmethods__": "frozenset()",
95
+ "_abc_impl": "<_abc_data object at 0x7f833cd4ee70>"
96
+ },
97
+ "replay_buffer_kwargs": {},
98
+ "train_freq": {
99
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
100
+ ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
101
+ },
102
+ "actor": null,
103
+ "use_sde_at_warmup": false,
104
+ "exploration_initial_eps": 1.0,
105
+ "exploration_final_eps": 0.05,
106
+ "exploration_fraction": 0.1,
107
+ "target_update_interval": 625,
108
+ "_n_calls": 62500,
109
+ "max_grad_norm": 10,
110
+ "exploration_rate": 0.05,
111
+ "exploration_schedule": {
112
+ ":type:": "<class 'function'>",
113
+ ":serialized:": "gASVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
114
+ }
115
+ }
MountainCar-v0_dqn_1_million/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0b420f655cfef266730983548b54668885e355debcd9cbc4c47af9cbbde7109
3
+ size 39681
MountainCar-v0_dqn_1_million/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8294f08ae6349e764e449e7c1e518795dbc80c75dfc1c318ec2a7b8fdfd22d9
3
+ size 40449
MountainCar-v0_dqn_1_million/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
MountainCar-v0_dqn_1_million/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCar-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -200.00 +/- 0.00
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: MountainCar-v0
20
+ type: MountainCar-v0
21
+ ---
22
+
23
+ # **DQN** Agent playing **MountainCar-v0**
24
+ This is a trained model of a **DQN** agent playing **MountainCar-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f833ccacc20>", "_build": "<function DQNPolicy._build at 0x7f833ccaccb0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f833ccacd40>", "forward": "<function DQNPolicy.forward at 0x7f833ccacdd0>", "_predict": "<function DQNPolicy._predict at 0x7f833ccace60>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f833ccacef0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f833ccacf80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f833cd09fc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVhwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsChZRoColDCJqZmb8pXI+9lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsChZRoColDCJqZGT8pXI89lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsChZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsChZRoKolDAgEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVRwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAABOiueFF4LrLjn+8a2tSq9m8mS2j+epWw5YSX08eOOyHMpMWBlWQxGDLd6U1cikmtnAETiy+1nenTZ5Nd1/wgB1jkBmBZHon4wz7rydg/+Xc+MIj+5bSW4CPAvNDej1YryrQv0bQCPHCvJjzUBFHBr6eFZKP0h6Il8+IryQ6LSrCzpAAIcCtva6Z3yhGcKyCwZwrFjHBFOXuMw+dWHSMlYLt6WI2LGySTu6V+FFDY7xRMj9Cek1q1ou+gp9ExbdcSBb0lrfuAhtjXIG1L7nGLoHO5XGwMZlN+UM8PmLVCWCWoANrdAVFgEwEJNPrxRJBEJ2dpxazgrU4NI2729UZ/jBtRxd1AVsUJiz6p+U7KXLllr0Yl1jSLYHHL5ptOHsZssJPlBqZnWOREho9suDfSy9GfpDaDVGD0HID3ixtMZNv1rKFFPyQJMrtuPzqqpwQQ2LJkmdPatSrFkDP7ozwj+0YlPv6yOntKhSfi+4Ryruu8WgQRA8jCIREPiP9mB1q3mmrtn0E++uq5N+zyQtdT1LP6zRNd/Vr1ROakBtahJupX/0qaelxducJJLtYZCA1LJuh4YLXuHX4/PYFcA3wVX6rH5Pl0YAOGyONQ4SoBHc2NajNUVV2SiG/DT2RmCOd4UUNN7as/xpEpeVO+xUagDAJ29VbzJeZDoZ6E2I9Y9b9K/aSWMxKmZUqPtW1Q+ZIfMk/2AX5qCO/VQIfeBJUV0hDYOJeOziS+CHsbWy4ovo6IAN/bBasnX5RJW94+q+aYRPDFMPfrKOJsZBKtVG9ZoTUCk2HCJECaWn1+GDcTMmQ/SAuG0hPmNTpzjt8sksk52qUgzNe8F9+/gxKoIrPZQ4sCCLl93XoQJFLZEtDAsjFa+G7o0fYHmxSruJDQUhNNDU3Zexwgf9l/tAGu5bq5+h6k/hSHDzy7qtXZkKRzlcLK1irjlGVzMMDebjruplmkw3/gh/QehYbHWs8XstSir+SziH49Q/NwtWJYQQvHBImJ4BUUg4y2N3WFV6mL2CvkYPF5r2Fo6gZ+z9JNvNcxizET23Qj5R34fijKE+gPdgx5JxI6LoJgQvTIy3oKOL/OUTiSSgH+Oh69uTXKDzgS98v5m2s+DbqZETO/RX5KFlyjfpfefSMdYZ+rupC+w4bpPVuxHxGkGbodoPVUTnwB9wdq/Jnij+fpj1an/+BR4K8HIs96U+9NsOeSsp4/Lqwf6x9nj3LmLuMjlFVDGN3KSpGSq2naEd+npulapEzzbynxRzomU3II33rmyTgfKjFwumdeQfPn8tX6aytZZr4Hoi0aFU0o9T9yOOG64FE/V8wKw8W/4vnC5+qkDTSmxrPykkI+BV5SquR70uK1gt9AW9IVJkauQuCHVhNBfMltMRnBqKJO2cAJ1YBNdHlVKrjK9RzP0fIIgKrgKsyQMQl3XrAdRS7RAVc191xYtc/z69T4DvqwQPI9UVVXyTm8d5F2oe0F+htT5rCQX8r4LtMSkz2yL/b0DOETEAWVfcql1b3gPnyHJJVhAks9dOw2HAew2s+gtI0P9JHAIRoLtbG7ZxBm8jnwViZU0M8/n84tIWuSeYWgW/3XdJPSDah0KC9Dj08DzT+ihNLtYegsIfaNbWXOwaM94+mJK4coCQXNnKlVZ8wH7kYKztBJ059629mVcCFNC3yWKVzCkrWgnq15D3RGkVLM3AysCT+H5c8/e5XWtZvstjHechBoskfLtDVYM4U2A2qUckSs4UeXmaGiNTIvjbkwog+ZlLYFBh/aM778lRB8oIa7IYhgzxLCJKKW7cvD3/K/Aj8XRVR9nQ9SNs/iWCkA6W5gNkYX4Vujj01dNPQP8aYMARs/HsSqUq4mphtFd8j6LS/21CUwrtNviU1jI3UwW7Mb+5W72nbVHQmDwSnvSo48bvRRyND7zU1OfkE7Lo/UmOmusrVrHy5AzvMlaI547SbfrV8BkrfAF5ja/b6NJkmMJsNa3/7TN9VpqhFC67jG/a4faMe/v7vKZGCUM/tGCivw2UL5RKmspLlfcubxRFb5e+e3xk8WEZ7s9BiP96BA6wDJPa19sGgcLQJZ1xcz7Ln/VdL6FToUOdQFh16tzGnwJwwxezeZSUmddm2O+ZSZ2O/b/PToaKraL1S0BcNs/UI/OKN+fiz7IzM3nUC1r/+p6J5JUo7tTdWq9nZblkecmCZc5BEyavmyb7bPvRfRMiBeuGgrBlMHIpkhiR9VaXZMZBTsetvnLy7Vpm4LGSlApK4gutkPECPJnuLgPOEE3qjg8aN47fYlDI2BKoPCsw9xTVYVPf3uyuk3IXAHeX4aO+z7+OkMTS7EdQsUTymx0t/NKEqVlopJCojFWZwyQBHePKNApkvCgtA6y3n4SDjWS5JS/mbIIpdTVp6wLuDXytaIE+GCF9euSYutjzoCCLLIXkiTZ10YQGDoQjHnl+doeYa8cA5VlsANs4OpaiqI4QDjNfqcAlrF9lYJWNx9Hc6CgPKkPk4s6zTtTV3THMYIwTPYc6a3BqmTaTw6GTIF7hKlyRkjRtXYUehKk6iKhg7zxwFpi9e+t5GEvkw+fDPFxTiQNtaLguReoswiKufUMLRvmv08JXKie4IAeNINu/SdribBhTDrn2miWNUrg6eb8vm19KnBnvMoaRZaiZ6/W+tfrshxSjO0+hqmGW0W/kAEzpp6dI2REykGvQ/uj7gvZMxSo/zJvdf10zETGCBCLnGdjHrfYWGp1p4U1jD3ayRGZ+M0pFB6sKpUt40D0xsPD3cv3/GS7+iHVB0aMj1xqBzeMqfgcrcqJyqI5R9ai0VpSHuAsEX517jexem575UUtN5S+ber95oOOtpXa8Ca9ywm4JH0PjS7UuI7lJQv6e3R7hgvfZULj5sGHl17NZVnodxydpIDH2nP1dH+6QmCjjT+KFbuDtTa/gBOPmt0sibmZNzaZkwBmMWytmPbqlPDyE3/8Ij65Qlyqnqdc3Xsv5XUI5b1mRh+e9zTcfaaQeuJuMNYnCehcPNk8mnHI6J3fMnsFVlLGmAJ2JcXyPizpUNZxBohs6t90YxduaYfjMwyGv4agRAK1ERpVeJR8miuVAiPlNhLV7wPI+0VsJsJ73i+/B1OYvkdVkbKWOEPyUXMCtF8Du1ISoMX8djsXiTlHFvIeJs/vNgykFOKImIUGekhUbK2FIXuxgjdJDQJs5HIU5H2XNnHt3H39giebgGYfY4HV7D8xHmA6rU0rJaVBpLKCzW/bYG4iV/ssSPRiqPL0YRPhttJxU6WCZX6Ow4RIiUeiIzazjXdzcH+42l6qyFsphOzidPLqFs14GsSwciXpYHI1mQD9fvT5R0lGKMA3Bvc5RNmAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 3, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655569106.8005204, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVCgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOA5DmwvqsxFjk3hKG+J0AOPB8Smb4aY1U8M22gvtYdJDswB46+mn0pPGv4kr7cgHs8u96ovqGZujsRWaS+345fPPW9pr7vM0s8remvvgvivTspT6y+p8QkO0ntj77DrTI89/efvnfTCDy3Do2+gYZTPAfcjb745VQ8mTmQvsS0QzyUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAEBAQEBAQEBAQEBAQEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVCgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOAqkywvog23jk49qW+Y/AUPDi9n748S108brWhvvw2QjsdU5O+5bozPHLUmr6gLII8IsmrvgmkxTuIVau+gCtlPJQXrb4ldVA8NuGyvmACxjuymK2+KmA5O7eClb5vhDw8kz6kvpXaDzzrqpO+xbNdPDeDlL6h6148P1eWvixkTTyUdJRiLg=="}, "_episode_num": 4992, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0CUZdDA8B+4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUZdBKL877dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUZc/WlMyrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUZc9pRGc4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBMCtA9ndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBKujh1ldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBJPZZjhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBH4oJAudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBGVzIV/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBDv3JxOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBCLMs6JdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBAzpHI7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA/OMVDbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA9m6GxmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA8PWhAXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA6fra/RdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA5BkZrIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA3H7xd6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA1SOzY3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaAzg/C66dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalg00m+kdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalfhddE9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaleDWbw0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalcyFfzCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalbI91U3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalYf4h2XdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalXBP9DQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalVp9JBgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalUFB6a9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalSl3yI6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalRPXTVldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalPcBU70dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalN6gM+edX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalMGHHmzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalKRMewLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalIhyKekdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbKA+pwS8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ/vv0AcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ+XZ5AydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ9B8hLXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ7laKUFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ49HMEBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ3aBZp0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ2C/XXidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ0elsP8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJy3kPtldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJxjriVCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJvxH5JsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJuP3i71dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJsXSBsidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJqiXY16dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJo3rD64dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbublijL0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuafzz3AdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuZGax5cdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuXv6TGHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuWKdhAodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuTgl4TsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuR8MNMHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuQkX1rZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuO+7Dl6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuNwR5C4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuMbm2b5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuKqGUOedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuJKJ2t/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuHU+cH4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuFev6j4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuD28IzFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcS5FPSDzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcS3z+WGAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcS2WpqASdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcS1E3KjjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSzbeuV5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSw/PgNxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSvoePq+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSuX/o7ndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSs5n13/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSrTpgTidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSp9ZzPsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSoKlYU4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSmtyPuHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSk2gnMMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSjCYTkAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcShUBGQTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2+3H7xedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc29lmOENdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc28Hv+fidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc26xxDLKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc25HmRvFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc22dNFjNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc205U96kdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2ziCJ40dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2x9G7SRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2wblzU7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2vH93r2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2tVJcxCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2rzoUzsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2p6QeV+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2oFFDv3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2mUnogWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 14844, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f833cd00320>", "add": "<function ReplayBuffer.add at 0x7f833cd003b0>", "sample": "<function ReplayBuffer.sample at 0x7f833cd00440>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f833cd004d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f833cd4ee70>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 625, "_n_calls": 62500, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9c6e078688b1c7e03c8678b0af24e7f9da7e4b1114486ea661ee2b67834a97c
3
+ size 200682
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -200.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-18T16:57:13.144078"}