harryb0905
commited on
Commit
·
3e97385
1
Parent(s):
0402fab
Upload DQN Mountain Car trained agent
Browse files- .gitattributes +1 -0
- MountainCar-v0_dqn_1_million.zip +3 -0
- MountainCar-v0_dqn_1_million/_stable_baselines3_version +1 -0
- MountainCar-v0_dqn_1_million/data +115 -0
- MountainCar-v0_dqn_1_million/policy.optimizer.pth +3 -0
- MountainCar-v0_dqn_1_million/policy.pth +3 -0
- MountainCar-v0_dqn_1_million/pytorch_variables.pth +3 -0
- MountainCar-v0_dqn_1_million/system_info.txt +7 -0
- README.md +36 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
MountainCar-v0_dqn_1_million.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72b1b104425640ff44e6ef7fdb5f1f271185a447c262ea3648034b18faa3e059
|
3 |
+
size 98851
|
MountainCar-v0_dqn_1_million/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
MountainCar-v0_dqn_1_million/data
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7f833ccacc20>",
|
8 |
+
"_build": "<function DQNPolicy._build at 0x7f833ccaccb0>",
|
9 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7f833ccacd40>",
|
10 |
+
"forward": "<function DQNPolicy.forward at 0x7f833ccacdd0>",
|
11 |
+
"_predict": "<function DQNPolicy._predict at 0x7f833ccace60>",
|
12 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f833ccacef0>",
|
13 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f833ccacf80>",
|
14 |
+
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_impl": "<_abc_data object at 0x7f833cd09fc0>"
|
16 |
+
},
|
17 |
+
"verbose": 1,
|
18 |
+
"policy_kwargs": {},
|
19 |
+
"observation_space": {
|
20 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
21 |
+
":serialized:": "gASVhwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsChZRoColDCJqZmb8pXI+9lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsChZRoColDCJqZGT8pXI89lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsChZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsChZRoKolDAgEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
22 |
+
"dtype": "float32",
|
23 |
+
"_shape": [
|
24 |
+
2
|
25 |
+
],
|
26 |
+
"low": "[-1.2 -0.07]",
|
27 |
+
"high": "[0.6 0.07]",
|
28 |
+
"bounded_below": "[ True True]",
|
29 |
+
"bounded_above": "[ True True]",
|
30 |
+
"_np_random": null
|
31 |
+
},
|
32 |
+
"action_space": {
|
33 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
34 |
+
":serialized:": "gASVRwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAABOiueFF4LrLjn+8a2tSq9m8mS2j+epWw5YSX08eOOyHMpMWBlWQxGDLd6U1cikmtnAETiy+1nenTZ5Nd1/wgB1jkBmBZHon4wz7rydg/+Xc+MIj+5bSW4CPAvNDej1YryrQv0bQCPHCvJjzUBFHBr6eFZKP0h6Il8+IryQ6LSrCzpAAIcCtva6Z3yhGcKyCwZwrFjHBFOXuMw+dWHSMlYLt6WI2LGySTu6V+FFDY7xRMj9Cek1q1ou+gp9ExbdcSBb0lrfuAhtjXIG1L7nGLoHO5XGwMZlN+UM8PmLVCWCWoANrdAVFgEwEJNPrxRJBEJ2dpxazgrU4NI2729UZ/jBtRxd1AVsUJiz6p+U7KXLllr0Yl1jSLYHHL5ptOHsZssJPlBqZnWOREho9suDfSy9GfpDaDVGD0HID3ixtMZNv1rKFFPyQJMrtuPzqqpwQQ2LJkmdPatSrFkDP7ozwj+0YlPv6yOntKhSfi+4Ryruu8WgQRA8jCIREPiP9mB1q3mmrtn0E++uq5N+zyQtdT1LP6zRNd/Vr1ROakBtahJupX/0qaelxducJJLtYZCA1LJuh4YLXuHX4/PYFcA3wVX6rH5Pl0YAOGyONQ4SoBHc2NajNUVV2SiG/DT2RmCOd4UUNN7as/xpEpeVO+xUagDAJ29VbzJeZDoZ6E2I9Y9b9K/aSWMxKmZUqPtW1Q+ZIfMk/2AX5qCO/VQIfeBJUV0hDYOJeOziS+CHsbWy4ovo6IAN/bBasnX5RJW94+q+aYRPDFMPfrKOJsZBKtVG9ZoTUCk2HCJECaWn1+GDcTMmQ/SAuG0hPmNTpzjt8sksk52qUgzNe8F9+/gxKoIrPZQ4sCCLl93XoQJFLZEtDAsjFa+G7o0fYHmxSruJDQUhNNDU3Zexwgf9l/tAGu5bq5+h6k/hSHDzy7qtXZkKRzlcLK1irjlGVzMMDebjruplmkw3/gh/QehYbHWs8XstSir+SziH49Q/NwtWJYQQvHBImJ4BUUg4y2N3WFV6mL2CvkYPF5r2Fo6gZ+z9JNvNcxizET23Qj5R34fijKE+gPdgx5JxI6LoJgQvTIy3oKOL/OUTiSSgH+Oh69uTXKDzgS98v5m2s+DbqZETO/RX5KFlyjfpfefSMdYZ+rupC+w4bpPVuxHxGkGbodoPVUTnwB9wdq/Jnij+fpj1an/+BR4K8HIs96U+9NsOeSsp4/Lqwf6x9nj3LmLuMjlFVDGN3KSpGSq2naEd+npulapEzzbynxRzomU3II33rmyTgfKjFwumdeQfPn8tX6aytZZr4Hoi0aFU0o9T9yOOG64FE/V8wKw8W/4vnC5+qkDTSmxrPykkI+BV5SquR70uK1gt9AW9IVJkauQuCHVhNBfMltMRnBqKJO2cAJ1YBNdHlVKrjK9RzP0fIIgKrgKsyQMQl3XrAdRS7RAVc191xYtc/z69T4DvqwQPI9UVVXyTm8d5F2oe0F+htT5rCQX8r4LtMSkz2yL/b0DOETEAWVfcql1b3gPnyHJJVhAks9dOw2HAew2s+gtI0P9JHAIRoLtbG7ZxBm8jnwViZU0M8/n84tIWuSeYWgW/3XdJPSDah0KC9Dj08DzT+ihNLtYegsIfaNbWXOwaM94+mJK4coCQXNnKlVZ8wH7kYKztBJ059629mVcCFNC3yWKVzCkrWgnq15D3RGkVLM3AysCT+H5c8/e5XWtZvstjHechBoskfLtDVYM4U2A2qUckSs4UeXmaGiNTIvjbkwog+ZlLYFBh/aM778lRB8oIa7IYhgzxLCJKKW7cvD3/K/Aj8XRVR9nQ9SNs/iWCkA6W5gNkYX4Vujj01dNPQP8aYMARs/HsSqUq4mphtFd8j6LS/21CUwrtNviU1jI3UwW7Mb+5W72nbVHQmDwSnvSo48bvRRyND7zU1OfkE7Lo/UmOmusrVrHy5AzvMlaI547SbfrV8BkrfAF5ja/b6NJkmMJsNa3/7TN9VpqhFC67jG/a4faMe/v7vKZGCUM/tGCivw2UL5RKmspLlfcubxRFb5e+e3xk8WEZ7s9BiP96BA6wDJPa19sGgcLQJZ1xcz7Ln/VdL6FToUOdQFh16tzGnwJwwxezeZSUmddm2O+ZSZ2O/b/PToaKraL1S0BcNs/UI/OKN+fiz7IzM3nUC1r/+p6J5JUo7tTdWq9nZblkecmCZc5BEyavmyb7bPvRfRMiBeuGgrBlMHIpkhiR9VaXZMZBTsetvnLy7Vpm4LGSlApK4gutkPECPJnuLgPOEE3qjg8aN47fYlDI2BKoPCsw9xTVYVPf3uyuk3IXAHeX4aO+z7+OkMTS7EdQsUTymx0t/NKEqVlopJCojFWZwyQBHePKNApkvCgtA6y3n4SDjWS5JS/mbIIpdTVp6wLuDXytaIE+GCF9euSYutjzoCCLLIXkiTZ10YQGDoQjHnl+doeYa8cA5VlsANs4OpaiqI4QDjNfqcAlrF9lYJWNx9Hc6CgPKkPk4s6zTtTV3THMYIwTPYc6a3BqmTaTw6GTIF7hKlyRkjRtXYUehKk6iKhg7zxwFpi9e+t5GEvkw+fDPFxTiQNtaLguReoswiKufUMLRvmv08JXKie4IAeNINu/SdribBhTDrn2miWNUrg6eb8vm19KnBnvMoaRZaiZ6/W+tfrshxSjO0+hqmGW0W/kAEzpp6dI2REykGvQ/uj7gvZMxSo/zJvdf10zETGCBCLnGdjHrfYWGp1p4U1jD3ayRGZ+M0pFB6sKpUt40D0xsPD3cv3/GS7+iHVB0aMj1xqBzeMqfgcrcqJyqI5R9ai0VpSHuAsEX517jexem575UUtN5S+ber95oOOtpXa8Ca9ywm4JH0PjS7UuI7lJQv6e3R7hgvfZULj5sGHl17NZVnodxydpIDH2nP1dH+6QmCjjT+KFbuDtTa/gBOPmt0sibmZNzaZkwBmMWytmPbqlPDyE3/8Ij65Qlyqnqdc3Xsv5XUI5b1mRh+e9zTcfaaQeuJuMNYnCehcPNk8mnHI6J3fMnsFVlLGmAJ2JcXyPizpUNZxBohs6t90YxduaYfjMwyGv4agRAK1ERpVeJR8miuVAiPlNhLV7wPI+0VsJsJ73i+/B1OYvkdVkbKWOEPyUXMCtF8Du1ISoMX8djsXiTlHFvIeJs/vNgykFOKImIUGekhUbK2FIXuxgjdJDQJs5HIU5H2XNnHt3H39giebgGYfY4HV7D8xHmA6rU0rJaVBpLKCzW/bYG4iV/ssSPRiqPL0YRPhttJxU6WCZX6Ow4RIiUeiIzazjXdzcH+42l6qyFsphOzidPLqFs14GsSwciXpYHI1mQD9fvT5R0lGKMA3Bvc5RNmAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
35 |
+
"n": 3,
|
36 |
+
"_shape": [],
|
37 |
+
"dtype": "int64",
|
38 |
+
"_np_random": "RandomState(MT19937)"
|
39 |
+
},
|
40 |
+
"n_envs": 16,
|
41 |
+
"num_timesteps": 1000000,
|
42 |
+
"_total_timesteps": 1000000,
|
43 |
+
"_num_timesteps_at_start": 0,
|
44 |
+
"seed": null,
|
45 |
+
"action_noise": null,
|
46 |
+
"start_time": 1655569106.8005204,
|
47 |
+
"learning_rate": 0.0001,
|
48 |
+
"tensorboard_log": null,
|
49 |
+
"lr_schedule": {
|
50 |
+
":type:": "<class 'function'>",
|
51 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
52 |
+
},
|
53 |
+
"_last_obs": {
|
54 |
+
":type:": "<class 'numpy.ndarray'>",
|
55 |
+
":serialized:": "gASVCgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOA5DmwvqsxFjk3hKG+J0AOPB8Smb4aY1U8M22gvtYdJDswB46+mn0pPGv4kr7cgHs8u96ovqGZujsRWaS+345fPPW9pr7vM0s8remvvgvivTspT6y+p8QkO0ntj77DrTI89/efvnfTCDy3Do2+gYZTPAfcjb745VQ8mTmQvsS0QzyUdJRiLg=="
|
56 |
+
},
|
57 |
+
"_last_episode_starts": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAEBAQEBAQEBAQEBAQEBAQGUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_original_obs": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVCgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOAqkywvog23jk49qW+Y/AUPDi9n748S108brWhvvw2QjsdU5O+5bozPHLUmr6gLII8IsmrvgmkxTuIVau+gCtlPJQXrb4ldVA8NuGyvmACxjuymK2+KmA5O7eClb5vhDw8kz6kvpXaDzzrqpO+xbNdPDeDlL6h6148P1eWvixkTTyUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_episode_num": 4992,
|
66 |
+
"use_sde": false,
|
67 |
+
"sde_sample_freq": -1,
|
68 |
+
"_current_progress_remaining": 0.0,
|
69 |
+
"ep_info_buffer": {
|
70 |
+
":type:": "<class 'collections.deque'>",
|
71 |
+
":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0CUZdDA8B+4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUZdBKL877dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUZc/WlMyrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUZc9pRGc4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBMCtA9ndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBKujh1ldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBJPZZjhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBH4oJAudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBGVzIV/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBDv3JxOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBCLMs6JdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBAzpHI7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA/OMVDbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA9m6GxmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA8PWhAXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA6fra/RdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA5BkZrIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA3H7xd6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA1SOzY3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaAzg/C66dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalg00m+kdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalfhddE9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaleDWbw0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalcyFfzCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalbI91U3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalYf4h2XdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalXBP9DQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalVp9JBgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalUFB6a9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalSl3yI6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalRPXTVldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalPcBU70dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalN6gM+edX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalMGHHmzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalKRMewLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalIhyKekdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbKA+pwS8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ/vv0AcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ+XZ5AydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ9B8hLXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ7laKUFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ49HMEBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ3aBZp0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ2C/XXidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ0elsP8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJy3kPtldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJxjriVCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJvxH5JsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJuP3i71dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJsXSBsidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJqiXY16dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJo3rD64dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbublijL0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuafzz3AdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuZGax5cdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuXv6TGHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuWKdhAodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuTgl4TsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuR8MNMHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuQkX1rZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuO+7Dl6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuNwR5C4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuMbm2b5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuKqGUOedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuJKJ2t/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuHU+cH4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuFev6j4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuD28IzFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcS5FPSDzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcS3z+WGAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcS2WpqASdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcS1E3KjjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSzbeuV5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSw/PgNxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSvoePq+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSuX/o7ndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSs5n13/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSrTpgTidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSp9ZzPsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSoKlYU4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSmtyPuHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSk2gnMMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSjCYTkAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcShUBGQTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2+3H7xedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc29lmOENdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc28Hv+fidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc26xxDLKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc25HmRvFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc22dNFjNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc205U96kdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2ziCJ40dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2x9G7SRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2wblzU7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2vH93r2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2tVJcxCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2rzoUzsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2p6QeV+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2oFFDv3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2mUnogWdWUu"
|
72 |
+
},
|
73 |
+
"ep_success_buffer": {
|
74 |
+
":type:": "<class 'collections.deque'>",
|
75 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
76 |
+
},
|
77 |
+
"_n_updates": 14844,
|
78 |
+
"buffer_size": 1000000,
|
79 |
+
"batch_size": 32,
|
80 |
+
"learning_starts": 50000,
|
81 |
+
"tau": 1.0,
|
82 |
+
"gamma": 0.99,
|
83 |
+
"gradient_steps": 1,
|
84 |
+
"optimize_memory_usage": false,
|
85 |
+
"replay_buffer_class": {
|
86 |
+
":type:": "<class 'abc.ABCMeta'>",
|
87 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
88 |
+
"__module__": "stable_baselines3.common.buffers",
|
89 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
90 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f833cd00320>",
|
91 |
+
"add": "<function ReplayBuffer.add at 0x7f833cd003b0>",
|
92 |
+
"sample": "<function ReplayBuffer.sample at 0x7f833cd00440>",
|
93 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f833cd004d0>",
|
94 |
+
"__abstractmethods__": "frozenset()",
|
95 |
+
"_abc_impl": "<_abc_data object at 0x7f833cd4ee70>"
|
96 |
+
},
|
97 |
+
"replay_buffer_kwargs": {},
|
98 |
+
"train_freq": {
|
99 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
100 |
+
":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
101 |
+
},
|
102 |
+
"actor": null,
|
103 |
+
"use_sde_at_warmup": false,
|
104 |
+
"exploration_initial_eps": 1.0,
|
105 |
+
"exploration_final_eps": 0.05,
|
106 |
+
"exploration_fraction": 0.1,
|
107 |
+
"target_update_interval": 625,
|
108 |
+
"_n_calls": 62500,
|
109 |
+
"max_grad_norm": 10,
|
110 |
+
"exploration_rate": 0.05,
|
111 |
+
"exploration_schedule": {
|
112 |
+
":type:": "<class 'function'>",
|
113 |
+
":serialized:": "gASVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
114 |
+
}
|
115 |
+
}
|
MountainCar-v0_dqn_1_million/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0b420f655cfef266730983548b54668885e355debcd9cbc4c47af9cbbde7109
|
3 |
+
size 39681
|
MountainCar-v0_dqn_1_million/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8294f08ae6349e764e449e7c1e518795dbc80c75dfc1c318ec2a7b8fdfd22d9
|
3 |
+
size 40449
|
MountainCar-v0_dqn_1_million/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
MountainCar-v0_dqn_1_million/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCar-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -200.00 +/- 0.00
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: MountainCar-v0
|
20 |
+
type: MountainCar-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **DQN** Agent playing **MountainCar-v0**
|
24 |
+
This is a trained model of a **DQN** agent playing **MountainCar-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f833ccacc20>", "_build": "<function DQNPolicy._build at 0x7f833ccaccb0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f833ccacd40>", "forward": "<function DQNPolicy.forward at 0x7f833ccacdd0>", "_predict": "<function DQNPolicy._predict at 0x7f833ccace60>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f833ccacef0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f833ccacf80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f833cd09fc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVhwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsChZRoColDCJqZmb8pXI+9lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsChZRoColDCJqZGT8pXI89lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsChZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsChZRoKolDAgEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVRwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAABOiueFF4LrLjn+8a2tSq9m8mS2j+epWw5YSX08eOOyHMpMWBlWQxGDLd6U1cikmtnAETiy+1nenTZ5Nd1/wgB1jkBmBZHon4wz7rydg/+Xc+MIj+5bSW4CPAvNDej1YryrQv0bQCPHCvJjzUBFHBr6eFZKP0h6Il8+IryQ6LSrCzpAAIcCtva6Z3yhGcKyCwZwrFjHBFOXuMw+dWHSMlYLt6WI2LGySTu6V+FFDY7xRMj9Cek1q1ou+gp9ExbdcSBb0lrfuAhtjXIG1L7nGLoHO5XGwMZlN+UM8PmLVCWCWoANrdAVFgEwEJNPrxRJBEJ2dpxazgrU4NI2729UZ/jBtRxd1AVsUJiz6p+U7KXLllr0Yl1jSLYHHL5ptOHsZssJPlBqZnWOREho9suDfSy9GfpDaDVGD0HID3ixtMZNv1rKFFPyQJMrtuPzqqpwQQ2LJkmdPatSrFkDP7ozwj+0YlPv6yOntKhSfi+4Ryruu8WgQRA8jCIREPiP9mB1q3mmrtn0E++uq5N+zyQtdT1LP6zRNd/Vr1ROakBtahJupX/0qaelxducJJLtYZCA1LJuh4YLXuHX4/PYFcA3wVX6rH5Pl0YAOGyONQ4SoBHc2NajNUVV2SiG/DT2RmCOd4UUNN7as/xpEpeVO+xUagDAJ29VbzJeZDoZ6E2I9Y9b9K/aSWMxKmZUqPtW1Q+ZIfMk/2AX5qCO/VQIfeBJUV0hDYOJeOziS+CHsbWy4ovo6IAN/bBasnX5RJW94+q+aYRPDFMPfrKOJsZBKtVG9ZoTUCk2HCJECaWn1+GDcTMmQ/SAuG0hPmNTpzjt8sksk52qUgzNe8F9+/gxKoIrPZQ4sCCLl93XoQJFLZEtDAsjFa+G7o0fYHmxSruJDQUhNNDU3Zexwgf9l/tAGu5bq5+h6k/hSHDzy7qtXZkKRzlcLK1irjlGVzMMDebjruplmkw3/gh/QehYbHWs8XstSir+SziH49Q/NwtWJYQQvHBImJ4BUUg4y2N3WFV6mL2CvkYPF5r2Fo6gZ+z9JNvNcxizET23Qj5R34fijKE+gPdgx5JxI6LoJgQvTIy3oKOL/OUTiSSgH+Oh69uTXKDzgS98v5m2s+DbqZETO/RX5KFlyjfpfefSMdYZ+rupC+w4bpPVuxHxGkGbodoPVUTnwB9wdq/Jnij+fpj1an/+BR4K8HIs96U+9NsOeSsp4/Lqwf6x9nj3LmLuMjlFVDGN3KSpGSq2naEd+npulapEzzbynxRzomU3II33rmyTgfKjFwumdeQfPn8tX6aytZZr4Hoi0aFU0o9T9yOOG64FE/V8wKw8W/4vnC5+qkDTSmxrPykkI+BV5SquR70uK1gt9AW9IVJkauQuCHVhNBfMltMRnBqKJO2cAJ1YBNdHlVKrjK9RzP0fIIgKrgKsyQMQl3XrAdRS7RAVc191xYtc/z69T4DvqwQPI9UVVXyTm8d5F2oe0F+htT5rCQX8r4LtMSkz2yL/b0DOETEAWVfcql1b3gPnyHJJVhAks9dOw2HAew2s+gtI0P9JHAIRoLtbG7ZxBm8jnwViZU0M8/n84tIWuSeYWgW/3XdJPSDah0KC9Dj08DzT+ihNLtYegsIfaNbWXOwaM94+mJK4coCQXNnKlVZ8wH7kYKztBJ059629mVcCFNC3yWKVzCkrWgnq15D3RGkVLM3AysCT+H5c8/e5XWtZvstjHechBoskfLtDVYM4U2A2qUckSs4UeXmaGiNTIvjbkwog+ZlLYFBh/aM778lRB8oIa7IYhgzxLCJKKW7cvD3/K/Aj8XRVR9nQ9SNs/iWCkA6W5gNkYX4Vujj01dNPQP8aYMARs/HsSqUq4mphtFd8j6LS/21CUwrtNviU1jI3UwW7Mb+5W72nbVHQmDwSnvSo48bvRRyND7zU1OfkE7Lo/UmOmusrVrHy5AzvMlaI547SbfrV8BkrfAF5ja/b6NJkmMJsNa3/7TN9VpqhFC67jG/a4faMe/v7vKZGCUM/tGCivw2UL5RKmspLlfcubxRFb5e+e3xk8WEZ7s9BiP96BA6wDJPa19sGgcLQJZ1xcz7Ln/VdL6FToUOdQFh16tzGnwJwwxezeZSUmddm2O+ZSZ2O/b/PToaKraL1S0BcNs/UI/OKN+fiz7IzM3nUC1r/+p6J5JUo7tTdWq9nZblkecmCZc5BEyavmyb7bPvRfRMiBeuGgrBlMHIpkhiR9VaXZMZBTsetvnLy7Vpm4LGSlApK4gutkPECPJnuLgPOEE3qjg8aN47fYlDI2BKoPCsw9xTVYVPf3uyuk3IXAHeX4aO+z7+OkMTS7EdQsUTymx0t/NKEqVlopJCojFWZwyQBHePKNApkvCgtA6y3n4SDjWS5JS/mbIIpdTVp6wLuDXytaIE+GCF9euSYutjzoCCLLIXkiTZ10YQGDoQjHnl+doeYa8cA5VlsANs4OpaiqI4QDjNfqcAlrF9lYJWNx9Hc6CgPKkPk4s6zTtTV3THMYIwTPYc6a3BqmTaTw6GTIF7hKlyRkjRtXYUehKk6iKhg7zxwFpi9e+t5GEvkw+fDPFxTiQNtaLguReoswiKufUMLRvmv08JXKie4IAeNINu/SdribBhTDrn2miWNUrg6eb8vm19KnBnvMoaRZaiZ6/W+tfrshxSjO0+hqmGW0W/kAEzpp6dI2REykGvQ/uj7gvZMxSo/zJvdf10zETGCBCLnGdjHrfYWGp1p4U1jD3ayRGZ+M0pFB6sKpUt40D0xsPD3cv3/GS7+iHVB0aMj1xqBzeMqfgcrcqJyqI5R9ai0VpSHuAsEX517jexem575UUtN5S+ber95oOOtpXa8Ca9ywm4JH0PjS7UuI7lJQv6e3R7hgvfZULj5sGHl17NZVnodxydpIDH2nP1dH+6QmCjjT+KFbuDtTa/gBOPmt0sibmZNzaZkwBmMWytmPbqlPDyE3/8Ij65Qlyqnqdc3Xsv5XUI5b1mRh+e9zTcfaaQeuJuMNYnCehcPNk8mnHI6J3fMnsFVlLGmAJ2JcXyPizpUNZxBohs6t90YxduaYfjMwyGv4agRAK1ERpVeJR8miuVAiPlNhLV7wPI+0VsJsJ73i+/B1OYvkdVkbKWOEPyUXMCtF8Du1ISoMX8djsXiTlHFvIeJs/vNgykFOKImIUGekhUbK2FIXuxgjdJDQJs5HIU5H2XNnHt3H39giebgGYfY4HV7D8xHmA6rU0rJaVBpLKCzW/bYG4iV/ssSPRiqPL0YRPhttJxU6WCZX6Ow4RIiUeiIzazjXdzcH+42l6qyFsphOzidPLqFs14GsSwciXpYHI1mQD9fvT5R0lGKMA3Bvc5RNmAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 3, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655569106.8005204, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVCgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOA5DmwvqsxFjk3hKG+J0AOPB8Smb4aY1U8M22gvtYdJDswB46+mn0pPGv4kr7cgHs8u96ovqGZujsRWaS+345fPPW9pr7vM0s8remvvgvivTspT6y+p8QkO0ntj77DrTI89/efvnfTCDy3Do2+gYZTPAfcjb745VQ8mTmQvsS0QzyUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAEBAQEBAQEBAQEBAQEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVCgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOAqkywvog23jk49qW+Y/AUPDi9n748S108brWhvvw2QjsdU5O+5bozPHLUmr6gLII8IsmrvgmkxTuIVau+gCtlPJQXrb4ldVA8NuGyvmACxjuymK2+KmA5O7eClb5vhDw8kz6kvpXaDzzrqpO+xbNdPDeDlL6h6148P1eWvixkTTyUdJRiLg=="}, "_episode_num": 4992, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0CUZdDA8B+4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUZdBKL877dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUZc/WlMyrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUZc9pRGc4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBMCtA9ndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBKujh1ldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBJPZZjhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBH4oJAudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBGVzIV/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBDv3JxOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBCLMs6JdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaBAzpHI7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA/OMVDbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA9m6GxmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA8PWhAXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA6fra/RdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA5BkZrIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA3H7xd6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaA1SOzY3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaAzg/C66dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalg00m+kdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalfhddE9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUaleDWbw0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalcyFfzCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalbI91U3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalYf4h2XdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalXBP9DQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalVp9JBgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalUFB6a9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalSl3yI6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalRPXTVldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalPcBU70dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalN6gM+edX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalMGHHmzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalKRMewLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUalIhyKekdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbKA+pwS8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ/vv0AcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ+XZ5AydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ9B8hLXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ7laKUFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ49HMEBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ3aBZp0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ2C/XXidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJ0elsP8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJy3kPtldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJxjriVCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJvxH5JsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJuP3i71dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJsXSBsidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJqiXY16dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbJo3rD64dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbublijL0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuafzz3AdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuZGax5cdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuXv6TGHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuWKdhAodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuTgl4TsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuR8MNMHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuQkX1rZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuO+7Dl6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuNwR5C4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuMbm2b5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuKqGUOedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuJKJ2t/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuHU+cH4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuFev6j4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUbuD28IzFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcS5FPSDzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcS3z+WGAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcS2WpqASdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcS1E3KjjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSzbeuV5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSw/PgNxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSvoePq+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSuX/o7ndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSs5n13/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSrTpgTidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSp9ZzPsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSoKlYU4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSmtyPuHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSk2gnMMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcSjCYTkAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUcShUBGQTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2+3H7xedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc29lmOENdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc28Hv+fidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc26xxDLKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc25HmRvFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc22dNFjNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc205U96kdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2ziCJ40dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2x9G7SRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2wblzU7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2vH93r2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2tVJcxCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2rzoUzsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2p6QeV+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2oFFDv3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CUc2mUnogWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 14844, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f833cd00320>", "add": "<function ReplayBuffer.add at 0x7f833cd003b0>", "sample": "<function ReplayBuffer.sample at 0x7f833cd00440>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f833cd004d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f833cd4ee70>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 625, "_n_calls": 62500, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9c6e078688b1c7e03c8678b0af24e7f9da7e4b1114486ea661ee2b67834a97c
|
3 |
+
size 200682
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -200.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-18T16:57:13.144078"}
|