File size: 7,370 Bytes
315a2c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0aae72
 
 
315a2c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0aae72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315a2c0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: hbenitez/AV_classifier_resnet50
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# hbenitez/AV_classifier_resnet50

This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.8261
- Validation Loss: 2.4425
- Train Accuracy: 0.6
- Epoch: 99

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 8000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 8.2326     | 8.1060          | 0.0            | 0     |
| 8.3420     | 7.6394          | 0.05           | 1     |
| 7.9643     | 7.5706          | 0.05           | 2     |
| 7.9337     | 7.6265          | 0.05           | 3     |
| 7.8018     | 7.7736          | 0.05           | 4     |
| 7.8009     | 7.7905          | 0.05           | 5     |
| 7.6369     | 7.6354          | 0.05           | 6     |
| 7.4782     | 7.5608          | 0.05           | 7     |
| 7.3655     | 7.6271          | 0.05           | 8     |
| 7.2886     | 7.6028          | 0.0            | 9     |
| 7.1145     | 7.5211          | 0.0            | 10    |
| 7.1232     | 7.2993          | 0.0            | 11    |
| 6.8393     | 7.2079          | 0.0            | 12    |
| 6.8202     | 7.2143          | 0.0            | 13    |
| 6.7180     | 7.1236          | 0.05           | 14    |
| 6.7318     | 7.1061          | 0.0            | 15    |
| 6.4563     | 6.9758          | 0.05           | 16    |
| 6.3765     | 6.9413          | 0.05           | 17    |
| 6.1791     | 6.8315          | 0.05           | 18    |
| 6.1946     | 6.7703          | 0.05           | 19    |
| 5.8448     | 6.7431          | 0.1            | 20    |
| 5.8514     | 6.6876          | 0.1            | 21    |
| 5.8200     | 6.6353          | 0.05           | 22    |
| 5.8323     | 6.5814          | 0.05           | 23    |
| 5.5553     | 6.4306          | 0.05           | 24    |
| 5.4999     | 6.4455          | 0.05           | 25    |
| 5.4370     | 6.3026          | 0.05           | 26    |
| 5.2288     | 6.0093          | 0.1            | 27    |
| 5.2173     | 6.0593          | 0.05           | 28    |
| 5.2280     | 6.0598          | 0.05           | 29    |
| 5.0484     | 5.9769          | 0.05           | 30    |
| 4.8703     | 5.8336          | 0.05           | 31    |
| 4.9881     | 5.7711          | 0.1            | 32    |
| 4.5905     | 5.6685          | 0.1            | 33    |
| 4.7240     | 5.6156          | 0.15           | 34    |
| 4.5095     | 5.4680          | 0.15           | 35    |
| 4.2225     | 5.3962          | 0.15           | 36    |
| 4.3615     | 5.3290          | 0.2            | 37    |
| 4.1862     | 5.3602          | 0.15           | 38    |
| 3.9455     | 5.2635          | 0.15           | 39    |
| 3.9737     | 5.2337          | 0.15           | 40    |
| 4.0922     | 5.1268          | 0.15           | 41    |
| 3.6042     | 4.9972          | 0.2            | 42    |
| 3.7219     | 4.8787          | 0.15           | 43    |
| 3.5563     | 4.9075          | 0.2            | 44    |
| 3.5897     | 4.9157          | 0.25           | 45    |
| 3.5769     | 4.7936          | 0.25           | 46    |
| 3.6225     | 4.8689          | 0.2            | 47    |
| 3.4568     | 4.8767          | 0.2            | 48    |
| 3.1431     | 4.7520          | 0.25           | 49    |
| 3.0607     | 4.5815          | 0.3            | 50    |
| 2.8904     | 4.5007          | 0.2            | 51    |
| 2.8308     | 4.5054          | 0.25           | 52    |
| 2.8136     | 4.2745          | 0.25           | 53    |
| 2.6192     | 4.3300          | 0.2            | 54    |
| 2.5308     | 4.3180          | 0.2            | 55    |
| 2.5192     | 4.2706          | 0.2            | 56    |
| 2.5761     | 4.1395          | 0.25           | 57    |
| 2.3516     | 3.9031          | 0.3            | 58    |
| 2.3231     | 3.8172          | 0.35           | 59    |
| 2.2735     | 3.7651          | 0.35           | 60    |
| 2.1215     | 3.8034          | 0.35           | 61    |
| 2.3229     | 3.8096          | 0.35           | 62    |
| 2.2230     | 3.7000          | 0.35           | 63    |
| 1.9059     | 3.6666          | 0.25           | 64    |
| 2.0289     | 3.6743          | 0.25           | 65    |
| 1.9178     | 3.5819          | 0.3            | 66    |
| 2.0295     | 3.5087          | 0.35           | 67    |
| 1.6499     | 3.4962          | 0.4            | 68    |
| 1.6261     | 3.4146          | 0.3            | 69    |
| 1.7059     | 3.4097          | 0.35           | 70    |
| 1.4837     | 3.2702          | 0.35           | 71    |
| 1.3766     | 3.2214          | 0.4            | 72    |
| 1.5898     | 3.2674          | 0.4            | 73    |
| 1.5002     | 3.1907          | 0.4            | 74    |
| 1.2641     | 3.1176          | 0.4            | 75    |
| 1.3456     | 3.1562          | 0.4            | 76    |
| 1.2655     | 2.9548          | 0.5            | 77    |
| 1.5449     | 2.8738          | 0.5            | 78    |
| 1.2519     | 2.8336          | 0.45           | 79    |
| 1.0682     | 2.8478          | 0.35           | 80    |
| 1.1891     | 2.8408          | 0.5            | 81    |
| 1.2920     | 2.6254          | 0.5            | 82    |
| 1.1239     | 2.7507          | 0.5            | 83    |
| 1.0857     | 2.7772          | 0.4            | 84    |
| 0.9821     | 2.8372          | 0.45           | 85    |
| 1.0457     | 2.8636          | 0.45           | 86    |
| 1.1419     | 2.8426          | 0.45           | 87    |
| 1.0782     | 2.7856          | 0.5            | 88    |
| 0.9906     | 2.6826          | 0.55           | 89    |
| 1.0766     | 2.6707          | 0.5            | 90    |
| 1.1115     | 2.6457          | 0.5            | 91    |
| 1.2201     | 2.6838          | 0.55           | 92    |
| 0.8706     | 2.5262          | 0.55           | 93    |
| 0.7441     | 2.5422          | 0.55           | 94    |
| 0.9710     | 2.4211          | 0.6            | 95    |
| 0.9731     | 2.4090          | 0.6            | 96    |
| 0.8942     | 2.3773          | 0.6            | 97    |
| 1.0461     | 2.4159          | 0.55           | 98    |
| 0.8261     | 2.4425          | 0.6            | 99    |


### Framework versions

- Transformers 4.30.2
- TensorFlow 2.13.0-rc2
- Datasets 2.13.1
- Tokenizers 0.13.3