File size: 16,033 Bytes
b0e8108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
---

base_model: google-bert/bert-base-uncased
datasets:
- stanfordnlp/snli
language:
- en
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:494430
- loss:SoftmaxLoss
widget:
- source_sentence: A person out front of a business with a woman statue holding a
    bottle.
  sentences:
  - A couple holds hands.
  - The young boy is upside down.
  - the man is baking some bread
- source_sentence: A person is dressed up in a weird costume with a red tongue sticking
    out.
  sentences:
  - thhe man plays a tuba
  - Four siblings are climbing on a fake black bear.
  - the tongue is blue
- source_sentence: A man on a train is talking on a cellphone.
  sentences:
  - A man is playing a flute on a bus.
  - The woman is sexy.
  - two cyclists racing
- source_sentence: An elderly woman giving her daughter a hug.
  sentences:
  - There are two women hugging.
  - A man holds a flag on the street.
  - people are sitting on a red roofed bus going to a museum
- source_sentence: A pilot dressed in a dark-colored sweater is sitting in the cock-pit
    of a plane with his hands crossed.
  sentences:
  - A pilot is sitting in his plain with his hands crossed
  - The boys are playing outside on a log.
  - Two men discuss their love lives.
---


# SentenceTransformer based on google-bert/bert-base-uncased

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("hcy5561/distilroberta-base-sentence-transformer-snli")

# Run inference

sentences = [

    'A pilot dressed in a dark-colored sweater is sitting in the cock-pit of a plane with his hands crossed.',

    'A pilot is sitting in his plain with his hands crossed',

    'The boys are playing outside on a log.',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### stanfordnlp/snli

* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
* Size: 494,430 training samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | premise                                                                           | hypothesis                                                                        | label                                                              |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | int                                                                |
  | details | <ul><li>min: 6 tokens</li><li>mean: 16.24 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.55 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>0: ~31.10%</li><li>1: ~33.40%</li><li>2: ~35.50%</li></ul> |
* Samples:
  | premise                                                                       | hypothesis                             | label          |
  |:------------------------------------------------------------------------------|:---------------------------------------|:---------------|
  | <code>Two men, one in yellow, are on a wooden boat.</code>                    | <code>Two men swimming in water</code> | <code>2</code> |
  | <code>Two people sleep on a couch.</code>                                     | <code>Two people are asleep.</code>    | <code>0</code> |
  | <code>a little boy is learning to swim with the help of a float board.</code> | <code>The boy is crawling.</code>      | <code>2</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)

### Evaluation Dataset

#### stanfordnlp/snli

* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
* Size: 27,468 evaluation samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | premise                                                                           | hypothesis                                                                        | label                                                              |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | int                                                                |
  | details | <ul><li>min: 6 tokens</li><li>mean: 16.66 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.48 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~36.10%</li><li>1: ~31.80%</li><li>2: ~32.10%</li></ul> |
* Samples:
  | premise                                                                                                  | hypothesis                                                                                                  | label          |
  |:---------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>A taxi cab driver looks stressed out in his car.</code>                                            | <code>a taxi driver is stressed</code>                                                                      | <code>0</code> |
  | <code>Two men do trick in a park.</code>                                                                 | <code>The men only sat on the bench in the park, doing nothing.</code>                                      | <code>2</code> |
  | <code>Two woman walking, the blond is looking at the camera wearing sunglasses making an oh face.</code> | <code>One lady makes a shocked face at the camera as the photographer tells the women they are lost.</code> | <code>1</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step  | Training Loss | loss   |
|:------:|:-----:|:-------------:|:------:|
| 0.1294 | 1000  | 0.9208        | 0.7448 |
| 0.2589 | 2000  | 0.7095        | 0.6462 |
| 0.3883 | 3000  | 0.6415        | 0.6199 |
| 0.5177 | 4000  | 0.6125        | 0.5940 |
| 0.6472 | 5000  | 0.5935        | 0.5672 |
| 0.7766 | 6000  | 0.5748        | 0.5550 |
| 0.9060 | 7000  | 0.5654        | 0.5506 |
| 1.0355 | 8000  | 0.5524        | 0.5376 |
| 1.1649 | 9000  | 0.5386        | 0.5319 |
| 1.2943 | 10000 | 0.5192        | 0.5361 |
| 1.4238 | 11000 | 0.4863        | 0.5304 |
| 1.5532 | 12000 | 0.4687        | 0.5278 |
| 1.6826 | 13000 | 0.4586        | 0.5305 |
| 1.8121 | 14000 | 0.4474        | 0.5222 |
| 1.9415 | 15000 | 0.4447        | 0.5237 |
| 2.0709 | 16000 | 0.434         | 0.5172 |
| 2.2004 | 17000 | 0.4243        | 0.5235 |
| 2.3298 | 18000 | 0.398         | 0.5224 |
| 2.4592 | 19000 | 0.3747        | 0.5344 |
| 2.5887 | 20000 | 0.3669        | 0.5301 |
| 2.7181 | 21000 | 0.3583        | 0.5406 |
| 2.8475 | 22000 | 0.3496        | 0.5354 |
| 2.9770 | 23000 | 0.3527        | 0.5324 |
| 3.1064 | 24000 | 0.3419        | 0.5299 |
| 3.2358 | 25000 | 0.3358        | 0.5456 |
| 3.3653 | 26000 | 0.3096        | 0.5562 |
| 3.4947 | 27000 | 0.2964        | 0.5644 |
| 3.6241 | 28000 | 0.2998        | 0.5565 |
| 3.7536 | 29000 | 0.2906        | 0.5590 |
| 3.8830 | 30000 | 0.2923        | 0.5564 |


### Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.1
- Transformers: 4.39.3
- PyTorch: 2.2.2+cu118
- Accelerate: 0.28.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2

## Citation

### BibTeX

#### Sentence Transformers and SoftmaxLoss
```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->