hdeavila commited on
Commit
6ea3393
·
verified ·
1 Parent(s): 5609594

Mi primer agente entrenado de luna lander con PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 237.88 +/- 23.54
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79b73f8a5630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79b73f8a56c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79b73f8a5750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79b73f8a57e0>", "_build": "<function ActorCriticPolicy._build at 0x79b73f8a5870>", "forward": "<function ActorCriticPolicy.forward at 0x79b73f8a5900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79b73f8a5990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79b73f8a5a20>", "_predict": "<function ActorCriticPolicy._predict at 0x79b73f8a5ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79b73f8a5b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79b73f8a5bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79b73f8a5c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79b73fa51540>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707840365968716497, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJYEzT586Tc/+iViPoCLp76Ru0w+tW+0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFqTBhx5s2MAWyUTc8BjAF0lEdAmzHvs/pt8HV9lChoBkdAcD1+De0ojWgHTZEBaAhHQJs1XPdEb5x1fZQoaAZHQGAO5AhStNloB03oA2gIR0CbPDAYYR/WdX2UKGgGR0BwasFUyYXwaAdNpAFoCEdAmz6ke2d/a3V9lChoBkdAcRCNiYsunWgHTXsBaAhHQJtAsVARkEt1fZQoaAZHQG2TqnFYMfBoB01bAWgIR0CbQ8vTPSlWdX2UKGgGR0BvjkoH9m6HaAdNTgFoCEdAm0WtCzC1qnV9lChoBkdAXwVdRiw0O2gHTegDaAhHQJtMin/DLr51fZQoaAZHQG1PfoicG1RoB01SAWgIR0CbTw63iJfqdX2UKGgGR0BxzO1Vo6CEaAdNhAFoCEdAm1OBPO6d2HV9lChoBkdAbgk9HMEA52gHTS0BaAhHQJtVoRkEs8R1fZQoaAZHQG4Y2y9mHxloB01lAWgIR0CbV57/GVAzdX2UKGgGR0BskLU7Sy+paAdNZgFoCEdAm1ryfUWl/HV9lChoBkdAYGormyPdVWgHTegDaAhHQJth6c6Nly11fZQoaAZHQHAW/uogmqpoB01FAWgIR0CbY7cpb2UTdX2UKGgGR0Bw6JYOlO45aAdNPgFoCEdAm2V6Gxlg+nV9lChoBkdAcB9iDujRD2gHTTEBaAhHQJtoUScslLR1fZQoaAZHQAnRB3Roh6loB0vzaAhHQJtpo+7lJYl1fZQoaAZHQFLczo2XLNhoB03oA2gIR0CbcLHGjsUqdX2UKGgGR0BtJTpFCswMaAdNrwFoCEdAm3M4/eLvTnV9lChoBkdAQHajL0SRKmgHTQIBaAhHQJt1yl3yI551fZQoaAZHQFh34X40uUVoB03oA2gIR0CbfJBjWkJsdX2UKGgGR0Bo2x2St/4JaAdNJAFoCEdAm367jT8YRHV9lChoBkdAbP8V2zOX3WgHTUgBaAhHQJuBIj6eoUB1fZQoaAZHQAMXTVlPJq9oB0vmaAhHQJuC5mXgLql1fZQoaAZHQG7wDx0+1ShoB01KAWgIR0CbhoTSb6P9dX2UKGgGR0BCGGy5Zr57aAdL82gIR0Cbh+7tiQT3dX2UKGgGR8AdyyeI2wV1aAdL62gIR0CbiUVGTcIrdX2UKGgGR0BtC29nK4hEaAdNNQFoCEdAm4sDVMEidXV9lChoBke/3xKYiPhhpmgHS71oCEdAm40uqrBCU3V9lChoBkdAbSKyqMm4RWgHTXYBaAhHQJuPVpYcNpd1fZQoaAZHQGn1QvQF9rpoB02TAWgIR0CbkbP8hs68dX2UKGgGR0A3FoTwlSjyaAdL6WgIR0CblCpQk5ZKdX2UKGgGR0BqJaMglnh9aAdNTAFoCEdAm5YQEt/WlXV9lChoBkdAcVbrWiDdxmgHTb0BaAhHQJuYpD1Gsmx1fZQoaAZHQGFPO1OTJQtoB03oA2gIR0Cbn28CgbqAdX2UKGgGR0BwTqTvAoG6aAdNawFoCEdAm6KcSf16FHV9lChoBkdAJgTwMH8jzWgHS/9oCEdAm6QbblA/s3V9lChoBkfAORwtapxWDGgHS+doCEdAm6Vswg1WKnV9lChoBkdAcgnW6shgV2gHTSQBaAhHQJunFtEXtSh1fZQoaAZHQEsV/LDAJsxoB00YAWgIR0Cbqd0Yj0L/dX2UKGgGR0BnoplQMx46aAdNaAFoCEdAm6vsBU70WnV9lChoBkdAHLbLlmvnsGgHS+loCEdAm62FEJBw/HV9lChoBkdAYHpJd0JWvWgHTegDaAhHQJu2WicoYvZ1fZQoaAZHQHAjoZVGTcJoB02AAWgIR0CbuZ+BpYcOdX2UKGgGR0Bx4YEPlMh6aAdNrwFoCEdAm7v+XRgJC3V9lChoBkdAPQwlByCFsmgHS/hoCEdAm71fFvQ4THV9lChoBkdAYaxumaYu02gHTegDaAhHQJvEKPwNLDh1fZQoaAZHwBhWcWj4595oB0vaaAhHQJvGh6zE74l1fZQoaAZHQG+DA3974SJoB02gAWgIR0CbyNSX+l0pdX2UKGgGR0BrstXeWOZLaAdNhAFoCEdAm8sM85jpcHV9lChoBkdAb8UGHpKSPmgHTWkBaAhHQJvONnRLK3d1fZQoaAZHQHD6kuQIUrVoB01+AmgIR0Cb0ekkrwvydX2UKGgGR0Ap1h6Skj5caAdNCwFoCEdAm9SsPJ7swHV9lChoBkdAbU5OUt7KJWgHTWABaAhHQJvW0CmuTzN1fZQoaAZHQGuQ+uNgjQloB02sAWgIR0Cb2TWyC4BndX2UKGgGR0BvZ3OryUcGaAdNVAFoCEdAm9xZwwTM7nV9lChoBkdAcRY8Cgbp/2gHTVkBaAhHQJvfI+qzZ6F1fZQoaAZHwDJwedTYNAloB0vpaAhHQJvg1KcurZJ1fZQoaAZHQHElT4593KVoB00dAWgIR0Cb4xnF5v9+dX2UKGgGR0BaWz2rXDm9aAdN6ANoCEdAm+p+MAFPi3V9lChoBkdAcTxdSl3yJGgHTTsBaAhHQJvtf5qM3qB1fZQoaAZHQGwfjM/yGztoB00lAWgIR0Cb7y/gR9PUdX2UKGgGR0Brz/Jmukk9aAdNJAFoCEdAm/C+VopQUHV9lChoBkdAcLdPjGT9sWgHTVkBaAhHQJvz52GIsRR1fZQoaAZHQG9dx6v7m+1oB02cAWgIR0Cb9kOf/WDpdX2UKGgGR0BxvHm/336AaAdNXAFoCEdAm/hO8oQWe3V9lChoBkdAbGjNbkfcOGgHTYwDaAhHQJv+2Ll3hXN1fZQoaAZHQCYF8w5/9YRoB0vkaAhHQJwBLr8iwB51fZQoaAZHwES75Y5ksjFoB0voaAhHQJwCe+HrQgN1fZQoaAZHQG3s8NQTEitoB007AWgIR0CcBEo2XLNfdX2UKGgGR0Bxx5uDSPU8aAdNiQFoCEdAnAaVR51Ng3V9lChoBkdAb9/X+VC5VmgHTVoBaAhHQJwJtTxXnyN1fZQoaAZHQGqByf+S8rZoB00BAmgIR0CcDL6ol2NedX2UKGgGR0BdCXUDuBtlaAdN6ANoCEdAnBWnfdhy83V9lChoBkdAb+UM/hVENWgHTb8BaAhHQJwZV4/u9e11fZQoaAZHQFqhHlOoHcFoB03oA2gIR0CcIGqnm7rcdX2UKGgGR0BcifMOf/WEaAdN6ANoCEdAnCc6v7m+03V9lChoBkdAbZjmYjSofmgHTdIBaAhHQJwp4dBBzFN1fZQoaAZHQHCgM7uDzy1oB01DAWgIR0CcK7AEt/WldX2UKGgGR0Bxc9cTrVvuaAdN5gJoCEdAnDEQ/HHWBnV9lChoBkdAZhdOdGy5Z2gHTVwBaAhHQJwzDdpItlJ1fZQoaAZHwDBZNCZ4Oc5oB0vEaAhHQJw1TAmAskJ1fZQoaAZHQG//Jgb6xgRoB01nAmgIR0CcOMltTDO1dX2UKGgGR8AzOzreIl+maAdNBwFoCEdAnDt2ygPEsXV9lChoBkdAYYgMFUyYX2gHTegDaAhHQJxEVOrQw9J1fZQoaAZHQESKTsY2sJZoB0vRaAhHQJxFjzbvgFZ1fZQoaAZHQG+tqUmlZYBoB02yAWgIR0CcSARE4NqhdX2UKGgGR0BxX/1g6U7kaAdNdQFoCEdAnEop6IFeOXV9lChoBkdAbZ3wKBun/GgHTUoCaAhHQJxO3WYnfEZ1fZQoaAZHQHGqGCEpRXRoB02OAWgIR0CcUSEXLvCudX2UKGgGR8BLw3eN1hb4aAdNEgFoCEdAnFPPN/vv0HV9lChoBkdAWjLjaPCEYmgHTegDaAhHQJxau1v2oNx1fZQoaAZHQHGFz+NtIkJoB021AWgIR0CcXTOPvKEGdX2UKGgGR0BrTz8FY+0PaAdNPQFoCEdAnF8V+Vkc0nV9lChoBkdALZKMefZmI2gHS9xoCEdAnGF/YzzmOnV9lChoBkdAcdE48U21lWgHTXcBaAhHQJxjugTRIBl1fZQoaAZHQG9KD7yhBZ9oB00sAWgIR0CcZVjVhCtzdX2UKGgGR0BqWOLR8c+8aAdNVAFoCEdAnGhiKFZgX3V9lChoBkdAbGs6d1+y7mgHTRsDaAhHQJxtK3F1jiJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVhAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRHsw2LxI2rtKGQCsGwLJeoACMA2luY5SKEX8K9xR+tXHG05HR6I3lRrAAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUigWMHSnSAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e577066963ac28fee4071eaf7f68c11007d8a07cb7e03a17e7ad215c112ba97
3
+ size 147636
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79b73f8a5630>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79b73f8a56c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79b73f8a5750>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79b73f8a57e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79b73f8a5870>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79b73f8a5900>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79b73f8a5990>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79b73f8a5a20>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x79b73f8a5ab0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79b73f8a5b40>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79b73f8a5bd0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x79b73f8a5c60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x79b73fa51540>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1707840365968716497,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJYEzT586Tc/+iViPoCLp76Ru0w+tW+0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFqTBhx5s2MAWyUTc8BjAF0lEdAmzHvs/pt8HV9lChoBkdAcD1+De0ojWgHTZEBaAhHQJs1XPdEb5x1fZQoaAZHQGAO5AhStNloB03oA2gIR0CbPDAYYR/WdX2UKGgGR0BwasFUyYXwaAdNpAFoCEdAmz6ke2d/a3V9lChoBkdAcRCNiYsunWgHTXsBaAhHQJtAsVARkEt1fZQoaAZHQG2TqnFYMfBoB01bAWgIR0CbQ8vTPSlWdX2UKGgGR0BvjkoH9m6HaAdNTgFoCEdAm0WtCzC1qnV9lChoBkdAXwVdRiw0O2gHTegDaAhHQJtMin/DLr51fZQoaAZHQG1PfoicG1RoB01SAWgIR0CbTw63iJfqdX2UKGgGR0BxzO1Vo6CEaAdNhAFoCEdAm1OBPO6d2HV9lChoBkdAbgk9HMEA52gHTS0BaAhHQJtVoRkEs8R1fZQoaAZHQG4Y2y9mHxloB01lAWgIR0CbV57/GVAzdX2UKGgGR0BskLU7Sy+paAdNZgFoCEdAm1ryfUWl/HV9lChoBkdAYGormyPdVWgHTegDaAhHQJth6c6Nly11fZQoaAZHQHAW/uogmqpoB01FAWgIR0CbY7cpb2UTdX2UKGgGR0Bw6JYOlO45aAdNPgFoCEdAm2V6Gxlg+nV9lChoBkdAcB9iDujRD2gHTTEBaAhHQJtoUScslLR1fZQoaAZHQAnRB3Roh6loB0vzaAhHQJtpo+7lJYl1fZQoaAZHQFLczo2XLNhoB03oA2gIR0CbcLHGjsUqdX2UKGgGR0BtJTpFCswMaAdNrwFoCEdAm3M4/eLvTnV9lChoBkdAQHajL0SRKmgHTQIBaAhHQJt1yl3yI551fZQoaAZHQFh34X40uUVoB03oA2gIR0CbfJBjWkJsdX2UKGgGR0Bo2x2St/4JaAdNJAFoCEdAm367jT8YRHV9lChoBkdAbP8V2zOX3WgHTUgBaAhHQJuBIj6eoUB1fZQoaAZHQAMXTVlPJq9oB0vmaAhHQJuC5mXgLql1fZQoaAZHQG7wDx0+1ShoB01KAWgIR0CbhoTSb6P9dX2UKGgGR0BCGGy5Zr57aAdL82gIR0Cbh+7tiQT3dX2UKGgGR8AdyyeI2wV1aAdL62gIR0CbiUVGTcIrdX2UKGgGR0BtC29nK4hEaAdNNQFoCEdAm4sDVMEidXV9lChoBke/3xKYiPhhpmgHS71oCEdAm40uqrBCU3V9lChoBkdAbSKyqMm4RWgHTXYBaAhHQJuPVpYcNpd1fZQoaAZHQGn1QvQF9rpoB02TAWgIR0CbkbP8hs68dX2UKGgGR0A3FoTwlSjyaAdL6WgIR0CblCpQk5ZKdX2UKGgGR0BqJaMglnh9aAdNTAFoCEdAm5YQEt/WlXV9lChoBkdAcVbrWiDdxmgHTb0BaAhHQJuYpD1Gsmx1fZQoaAZHQGFPO1OTJQtoB03oA2gIR0Cbn28CgbqAdX2UKGgGR0BwTqTvAoG6aAdNawFoCEdAm6KcSf16FHV9lChoBkdAJgTwMH8jzWgHS/9oCEdAm6QbblA/s3V9lChoBkfAORwtapxWDGgHS+doCEdAm6Vswg1WKnV9lChoBkdAcgnW6shgV2gHTSQBaAhHQJunFtEXtSh1fZQoaAZHQEsV/LDAJsxoB00YAWgIR0Cbqd0Yj0L/dX2UKGgGR0BnoplQMx46aAdNaAFoCEdAm6vsBU70WnV9lChoBkdAHLbLlmvnsGgHS+loCEdAm62FEJBw/HV9lChoBkdAYHpJd0JWvWgHTegDaAhHQJu2WicoYvZ1fZQoaAZHQHAjoZVGTcJoB02AAWgIR0CbuZ+BpYcOdX2UKGgGR0Bx4YEPlMh6aAdNrwFoCEdAm7v+XRgJC3V9lChoBkdAPQwlByCFsmgHS/hoCEdAm71fFvQ4THV9lChoBkdAYaxumaYu02gHTegDaAhHQJvEKPwNLDh1fZQoaAZHwBhWcWj4595oB0vaaAhHQJvGh6zE74l1fZQoaAZHQG+DA3974SJoB02gAWgIR0CbyNSX+l0pdX2UKGgGR0BrstXeWOZLaAdNhAFoCEdAm8sM85jpcHV9lChoBkdAb8UGHpKSPmgHTWkBaAhHQJvONnRLK3d1fZQoaAZHQHD6kuQIUrVoB01+AmgIR0Cb0ekkrwvydX2UKGgGR0Ap1h6Skj5caAdNCwFoCEdAm9SsPJ7swHV9lChoBkdAbU5OUt7KJWgHTWABaAhHQJvW0CmuTzN1fZQoaAZHQGuQ+uNgjQloB02sAWgIR0Cb2TWyC4BndX2UKGgGR0BvZ3OryUcGaAdNVAFoCEdAm9xZwwTM7nV9lChoBkdAcRY8Cgbp/2gHTVkBaAhHQJvfI+qzZ6F1fZQoaAZHwDJwedTYNAloB0vpaAhHQJvg1KcurZJ1fZQoaAZHQHElT4593KVoB00dAWgIR0Cb4xnF5v9+dX2UKGgGR0BaWz2rXDm9aAdN6ANoCEdAm+p+MAFPi3V9lChoBkdAcTxdSl3yJGgHTTsBaAhHQJvtf5qM3qB1fZQoaAZHQGwfjM/yGztoB00lAWgIR0Cb7y/gR9PUdX2UKGgGR0Brz/Jmukk9aAdNJAFoCEdAm/C+VopQUHV9lChoBkdAcLdPjGT9sWgHTVkBaAhHQJvz52GIsRR1fZQoaAZHQG9dx6v7m+1oB02cAWgIR0Cb9kOf/WDpdX2UKGgGR0BxvHm/336AaAdNXAFoCEdAm/hO8oQWe3V9lChoBkdAbGjNbkfcOGgHTYwDaAhHQJv+2Ll3hXN1fZQoaAZHQCYF8w5/9YRoB0vkaAhHQJwBLr8iwB51fZQoaAZHwES75Y5ksjFoB0voaAhHQJwCe+HrQgN1fZQoaAZHQG3s8NQTEitoB007AWgIR0CcBEo2XLNfdX2UKGgGR0Bxx5uDSPU8aAdNiQFoCEdAnAaVR51Ng3V9lChoBkdAb9/X+VC5VmgHTVoBaAhHQJwJtTxXnyN1fZQoaAZHQGqByf+S8rZoB00BAmgIR0CcDL6ol2NedX2UKGgGR0BdCXUDuBtlaAdN6ANoCEdAnBWnfdhy83V9lChoBkdAb+UM/hVENWgHTb8BaAhHQJwZV4/u9e11fZQoaAZHQFqhHlOoHcFoB03oA2gIR0CcIGqnm7rcdX2UKGgGR0BcifMOf/WEaAdN6ANoCEdAnCc6v7m+03V9lChoBkdAbZjmYjSofmgHTdIBaAhHQJwp4dBBzFN1fZQoaAZHQHCgM7uDzy1oB01DAWgIR0CcK7AEt/WldX2UKGgGR0Bxc9cTrVvuaAdN5gJoCEdAnDEQ/HHWBnV9lChoBkdAZhdOdGy5Z2gHTVwBaAhHQJwzDdpItlJ1fZQoaAZHwDBZNCZ4Oc5oB0vEaAhHQJw1TAmAskJ1fZQoaAZHQG//Jgb6xgRoB01nAmgIR0CcOMltTDO1dX2UKGgGR8AzOzreIl+maAdNBwFoCEdAnDt2ygPEsXV9lChoBkdAYYgMFUyYX2gHTegDaAhHQJxEVOrQw9J1fZQoaAZHQESKTsY2sJZoB0vRaAhHQJxFjzbvgFZ1fZQoaAZHQG+tqUmlZYBoB02yAWgIR0CcSARE4NqhdX2UKGgGR0BxX/1g6U7kaAdNdQFoCEdAnEop6IFeOXV9lChoBkdAbZ3wKBun/GgHTUoCaAhHQJxO3WYnfEZ1fZQoaAZHQHGqGCEpRXRoB02OAWgIR0CcUSEXLvCudX2UKGgGR8BLw3eN1hb4aAdNEgFoCEdAnFPPN/vv0HV9lChoBkdAWjLjaPCEYmgHTegDaAhHQJxau1v2oNx1fZQoaAZHQHGFz+NtIkJoB021AWgIR0CcXTOPvKEGdX2UKGgGR0BrTz8FY+0PaAdNPQFoCEdAnF8V+Vkc0nV9lChoBkdALZKMefZmI2gHS9xoCEdAnGF/YzzmOnV9lChoBkdAcdE48U21lWgHTXcBaAhHQJxjugTRIBl1fZQoaAZHQG9KD7yhBZ9oB00sAWgIR0CcZVjVhCtzdX2UKGgGR0BqWOLR8c+8aAdNVAFoCEdAnGhiKFZgX3V9lChoBkdAbGs6d1+y7mgHTRsDaAhHQJxtK3F1jiJ1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3908,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWVhAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRHsw2LxI2rtKGQCsGwLJeoACMA2luY5SKEX8K9xR+tXHG05HR6I3lRrAAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUigWMHSnSAHVidWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": "Generator(PCG64)"
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4bc9e8463b77cec40281015a2366a2012f97f3a01d8ed98dac414cbad1a4e61
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:966e510b820981809e1fa42b129ab34fbfb70281cb9adab72c08e059549efd18
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (161 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 237.87922640000002, "std_reward": 23.5352201416667, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-13T17:02:21.293291"}