End of training
Browse files- README.md +55 -50
- config.json +1 -1
- model.safetensors +1 -1
- preprocessor_config.json +1 -1
- runs/Jan20_10-29-04_jupyter-admin01/events.out.tfevents.1737368961.jupyter-admin01.120.6 +3 -0
- runs/Jan20_10-29-42_jupyter-admin01/events.out.tfevents.1737368993.jupyter-admin01.120.7 +3 -0
- runs/Jan20_10-30-21_jupyter-admin01/events.out.tfevents.1737369059.jupyter-admin01.120.8 +3 -0
- runs/Jan20_10-31-46_jupyter-admin01/events.out.tfevents.1737369117.jupyter-admin01.120.9 +3 -0
- runs/Jan20_10-32-26_jupyter-admin01/events.out.tfevents.1737369158.jupyter-admin01.120.10 +3 -0
- training_args.bin +1 -1
README.md
CHANGED
@@ -17,80 +17,80 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [segformer-b0-finetuned-ade-512-512](https://huggingface.co/segformer-b0-finetuned-ade-512-512) on the segments/sidewalk-semantic dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss:
|
21 |
-
- Mean Iou: 0.
|
22 |
-
- Mean Accuracy: 0.
|
23 |
-
- Overall Accuracy: 0.
|
24 |
- Accuracy Unlabeled: nan
|
25 |
-
- Accuracy Flat-road: 0.
|
26 |
-
- Accuracy Flat-sidewalk: 0.
|
27 |
-
- Accuracy Flat-crosswalk: 0.
|
28 |
-
- Accuracy Flat-cyclinglane:
|
29 |
-
- Accuracy Flat-parkingdriveway: 0.
|
30 |
-
- Accuracy Flat-railtrack:
|
31 |
- Accuracy Flat-curb: 0.0
|
32 |
- Accuracy Human-person: 0.0
|
33 |
-
- Accuracy Human-rider: 0.
|
34 |
-
- Accuracy Vehicle-car: 0.
|
35 |
-
- Accuracy Vehicle-truck:
|
36 |
- Accuracy Vehicle-bus: 0.0
|
37 |
-
- Accuracy Vehicle-tramtrain:
|
38 |
- Accuracy Vehicle-motorcycle: 0.0
|
39 |
- Accuracy Vehicle-bicycle: 0.0
|
40 |
- Accuracy Vehicle-caravan: 0.0
|
41 |
-
- Accuracy Vehicle-cartrailer: 0.
|
42 |
-
- Accuracy Construction-building: 0.
|
43 |
- Accuracy Construction-door: 0.0
|
44 |
- Accuracy Construction-wall: 0.0
|
45 |
-
- Accuracy Construction-fenceguardrail:
|
46 |
- Accuracy Construction-bridge: 0.0
|
47 |
-
- Accuracy Construction-tunnel:
|
48 |
- Accuracy Construction-stairs: 0.0
|
49 |
- Accuracy Object-pole: 0.0
|
50 |
- Accuracy Object-trafficsign: 0.0
|
51 |
-
- Accuracy Object-trafficlight: 0.
|
52 |
-
- Accuracy Nature-vegetation: 0.
|
53 |
-
- Accuracy Nature-terrain: 0.
|
54 |
-
- Accuracy Sky: 0.
|
55 |
- Accuracy Void-ground: 0.0
|
56 |
- Accuracy Void-dynamic: 0.0
|
57 |
-
- Accuracy Void-static:
|
58 |
-
- Accuracy Void-unclear:
|
59 |
-
- Iou Unlabeled:
|
60 |
-
- Iou Flat-road: 0.
|
61 |
-
- Iou Flat-sidewalk: 0.
|
62 |
-
- Iou Flat-crosswalk: 0.
|
63 |
-
- Iou Flat-cyclinglane: 0.
|
64 |
-
- Iou Flat-parkingdriveway: 0.
|
65 |
- Iou Flat-railtrack: 0.0
|
66 |
- Iou Flat-curb: 0.0
|
67 |
- Iou Human-person: 0.0
|
68 |
-
- Iou Human-rider: 0.
|
69 |
-
- Iou Vehicle-car: 0.
|
70 |
-
- Iou Vehicle-truck:
|
71 |
- Iou Vehicle-bus: 0.0
|
72 |
-
- Iou Vehicle-tramtrain:
|
73 |
- Iou Vehicle-motorcycle: 0.0
|
74 |
- Iou Vehicle-bicycle: 0.0
|
75 |
- Iou Vehicle-caravan: 0.0
|
76 |
-
- Iou Vehicle-cartrailer: 0.
|
77 |
-
- Iou Construction-building: 0.
|
78 |
- Iou Construction-door: 0.0
|
79 |
- Iou Construction-wall: 0.0
|
80 |
-
- Iou Construction-fenceguardrail:
|
81 |
- Iou Construction-bridge: 0.0
|
82 |
-
- Iou Construction-tunnel:
|
83 |
- Iou Construction-stairs: 0.0
|
84 |
- Iou Object-pole: 0.0
|
85 |
- Iou Object-trafficsign: 0.0
|
86 |
-
- Iou Object-trafficlight: 0.
|
87 |
-
- Iou Nature-vegetation: 0.
|
88 |
-
- Iou Nature-terrain: 0.
|
89 |
-
- Iou Sky: 0.
|
90 |
- Iou Void-ground: 0.0
|
91 |
- Iou Void-dynamic: 0.0
|
92 |
-
- Iou Void-static:
|
93 |
-
- Iou Void-unclear:
|
94 |
|
95 |
## Model description
|
96 |
|
@@ -115,17 +115,22 @@ The following hyperparameters were used during training:
|
|
115 |
- seed: 42
|
116 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
117 |
- lr_scheduler_type: linear
|
118 |
-
- num_epochs:
|
119 |
|
120 |
### Training results
|
121 |
|
122 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|
123 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
|
124 |
-
|
|
125 |
-
| 2.
|
126 |
-
| 2.
|
127 |
-
|
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
|
131 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [segformer-b0-finetuned-ade-512-512](https://huggingface.co/segformer-b0-finetuned-ade-512-512) on the segments/sidewalk-semantic dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.5824
|
21 |
+
- Mean Iou: 0.0054
|
22 |
+
- Mean Accuracy: 0.0686
|
23 |
+
- Overall Accuracy: 0.0400
|
24 |
- Accuracy Unlabeled: nan
|
25 |
+
- Accuracy Flat-road: 0.7137
|
26 |
+
- Accuracy Flat-sidewalk: 0.0
|
27 |
+
- Accuracy Flat-crosswalk: 0.0005
|
28 |
+
- Accuracy Flat-cyclinglane: nan
|
29 |
+
- Accuracy Flat-parkingdriveway: 0.0
|
30 |
+
- Accuracy Flat-railtrack: 0.0
|
31 |
- Accuracy Flat-curb: 0.0
|
32 |
- Accuracy Human-person: 0.0
|
33 |
+
- Accuracy Human-rider: 0.0947
|
34 |
+
- Accuracy Vehicle-car: 0.0
|
35 |
+
- Accuracy Vehicle-truck: nan
|
36 |
- Accuracy Vehicle-bus: 0.0
|
37 |
+
- Accuracy Vehicle-tramtrain: 0.0
|
38 |
- Accuracy Vehicle-motorcycle: 0.0
|
39 |
- Accuracy Vehicle-bicycle: 0.0
|
40 |
- Accuracy Vehicle-caravan: 0.0
|
41 |
+
- Accuracy Vehicle-cartrailer: 0.9616
|
42 |
+
- Accuracy Construction-building: 0.0
|
43 |
- Accuracy Construction-door: 0.0
|
44 |
- Accuracy Construction-wall: 0.0
|
45 |
+
- Accuracy Construction-fenceguardrail: nan
|
46 |
- Accuracy Construction-bridge: 0.0
|
47 |
+
- Accuracy Construction-tunnel: 0.0
|
48 |
- Accuracy Construction-stairs: 0.0
|
49 |
- Accuracy Object-pole: 0.0
|
50 |
- Accuracy Object-trafficsign: 0.0
|
51 |
+
- Accuracy Object-trafficlight: 0.2176
|
52 |
+
- Accuracy Nature-vegetation: 0.0000
|
53 |
+
- Accuracy Nature-terrain: 0.0
|
54 |
+
- Accuracy Sky: 0.0
|
55 |
- Accuracy Void-ground: 0.0
|
56 |
- Accuracy Void-dynamic: 0.0
|
57 |
+
- Accuracy Void-static: nan
|
58 |
+
- Accuracy Void-unclear: nan
|
59 |
+
- Iou Unlabeled: 0.0
|
60 |
+
- Iou Flat-road: 0.1014
|
61 |
+
- Iou Flat-sidewalk: 0.0
|
62 |
+
- Iou Flat-crosswalk: 0.0004
|
63 |
+
- Iou Flat-cyclinglane: 0.0
|
64 |
+
- Iou Flat-parkingdriveway: 0.0
|
65 |
- Iou Flat-railtrack: 0.0
|
66 |
- Iou Flat-curb: 0.0
|
67 |
- Iou Human-person: 0.0
|
68 |
+
- Iou Human-rider: 0.0039
|
69 |
+
- Iou Vehicle-car: 0.0
|
70 |
+
- Iou Vehicle-truck: nan
|
71 |
- Iou Vehicle-bus: 0.0
|
72 |
+
- Iou Vehicle-tramtrain: 0.0
|
73 |
- Iou Vehicle-motorcycle: 0.0
|
74 |
- Iou Vehicle-bicycle: 0.0
|
75 |
- Iou Vehicle-caravan: 0.0
|
76 |
+
- Iou Vehicle-cartrailer: 0.0228
|
77 |
+
- Iou Construction-building: 0.0
|
78 |
- Iou Construction-door: 0.0
|
79 |
- Iou Construction-wall: 0.0
|
80 |
+
- Iou Construction-fenceguardrail: nan
|
81 |
- Iou Construction-bridge: 0.0
|
82 |
+
- Iou Construction-tunnel: 0.0
|
83 |
- Iou Construction-stairs: 0.0
|
84 |
- Iou Object-pole: 0.0
|
85 |
- Iou Object-trafficsign: 0.0
|
86 |
+
- Iou Object-trafficlight: 0.0394
|
87 |
+
- Iou Nature-vegetation: 0.0000
|
88 |
+
- Iou Nature-terrain: 0.0
|
89 |
+
- Iou Sky: 0.0
|
90 |
- Iou Void-ground: 0.0
|
91 |
- Iou Void-dynamic: 0.0
|
92 |
+
- Iou Void-static: nan
|
93 |
+
- Iou Void-unclear: nan
|
94 |
|
95 |
## Model description
|
96 |
|
|
|
115 |
- seed: 42
|
116 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
117 |
- lr_scheduler_type: linear
|
118 |
+
- num_epochs: 2
|
119 |
|
120 |
### Training results
|
121 |
|
122 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|
123 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
|
124 |
+
| 2.3223 | 0.2 | 20 | 2.3183 | 0.0081 | 0.0599 | 0.0598 | nan | 0.7724 | 0.0000 | 0.0019 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3997 | 0.0077 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5064 | 0.0125 | 0.0350 | 0.0004 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0945 | 0.0000 | 0.0018 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0456 | 0.0073 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0955 | 0.0036 | 0.0020 | 0.0001 | 0.0 | 0.0 | nan | nan |
|
125 |
+
| 2.3053 | 0.4 | 40 | 2.1137 | 0.0070 | 0.0753 | 0.0608 | nan | 0.7392 | 0.0000 | 0.0018 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0659 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8513 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5173 | 0.0012 | 0.0063 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0932 | 0.0000 | 0.0017 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0032 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0273 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0898 | 0.0006 | 0.0006 | 0.0 | 0.0 | 0.0 | nan | nan |
|
126 |
+
| 2.0433 | 0.6 | 60 | 1.9808 | 0.0076 | 0.0829 | 0.0702 | nan | 0.7626 | 0.0 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0679 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9286 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6419 | 0.0001 | 0.0015 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0947 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0034 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0248 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1130 | 0.0000 | 0.0002 | 0.0 | 0.0 | 0.0 | nan | nan |
|
127 |
+
| 1.9249 | 0.8 | 80 | 1.8427 | 0.0070 | 0.0791 | 0.0632 | nan | 0.7638 | 0.0 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0417 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9489 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5388 | 0.0000 | 0.0003 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0968 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0023 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0235 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0936 | 0.0000 | 0.0000 | 0.0 | 0.0 | 0.0 | nan | nan |
|
128 |
+
| 1.7157 | 1.0 | 100 | 1.7687 | 0.0065 | 0.0790 | 0.0588 | nan | 0.7749 | 0.0 | 0.0005 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0989 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9497 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4683 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0903 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0043 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0242 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0819 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan |
|
129 |
+
| 1.6624 | 1.2 | 120 | 1.6653 | 0.0054 | 0.0709 | 0.0441 | nan | 0.7509 | 0.0 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0849 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9559 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2636 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0931 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0038 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0235 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0472 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan |
|
130 |
+
| 1.6718 | 1.4 | 140 | 1.6575 | 0.0050 | 0.0639 | 0.0370 | nan | 0.5706 | 0.0 | 0.0008 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0856 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9640 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2325 | 0.0000 | 0.0000 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0864 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0037 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0223 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0423 | 0.0000 | 0.0000 | 0.0 | 0.0 | 0.0 | nan | nan |
|
131 |
+
| 1.731 | 1.6 | 160 | 1.5986 | 0.0056 | 0.0693 | 0.0438 | nan | 0.6585 | 0.0 | 0.0004 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0946 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9597 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2964 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0949 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0041 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0238 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0515 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan |
|
132 |
+
| 1.7125 | 1.8 | 180 | 1.5779 | 0.0055 | 0.0693 | 0.0416 | nan | 0.7108 | 0.0 | 0.0006 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0942 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9633 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2420 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.1009 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0039 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0230 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0433 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan |
|
133 |
+
| 1.6421 | 2.0 | 200 | 1.5824 | 0.0054 | 0.0686 | 0.0400 | nan | 0.7137 | 0.0 | 0.0005 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0947 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9616 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2176 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.1014 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0039 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0228 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0394 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan |
|
134 |
|
135 |
|
136 |
### Framework versions
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"SegformerForSemanticSegmentation"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "heromiya/segformer-b0-finetuned-segments-sidewalk-2",
|
3 |
"architectures": [
|
4 |
"SegformerForSemanticSegmentation"
|
5 |
],
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14918708
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fd4cf65a6ce33717fd99a1564dfad5216709cb08c2e80835efb8198eff1033d
|
3 |
size 14918708
|
preprocessor_config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"do_normalize": true,
|
3 |
-
"do_reduce_labels":
|
4 |
"do_rescale": true,
|
5 |
"do_resize": true,
|
6 |
"image_mean": [
|
|
|
1 |
{
|
2 |
"do_normalize": true,
|
3 |
+
"do_reduce_labels": true,
|
4 |
"do_rescale": true,
|
5 |
"do_resize": true,
|
6 |
"image_mean": [
|
runs/Jan20_10-29-04_jupyter-admin01/events.out.tfevents.1737368961.jupyter-admin01.120.6
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7b50dfcb40feffc2eae61183a3aed070a73d20822177b9a4c31ba357999ec79
|
3 |
+
size 7504
|
runs/Jan20_10-29-42_jupyter-admin01/events.out.tfevents.1737368993.jupyter-admin01.120.7
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f756c4f1ce433ab170e6973e9c203d723dbf230986041ad243a99b34c6d2aad
|
3 |
+
size 7502
|
runs/Jan20_10-30-21_jupyter-admin01/events.out.tfevents.1737369059.jupyter-admin01.120.8
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c72a6c9e633b32e8b9cc99943cbefa58711c7f049d3d663522872b77edc09afa
|
3 |
+
size 11228
|
runs/Jan20_10-31-46_jupyter-admin01/events.out.tfevents.1737369117.jupyter-admin01.120.9
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:312ac5c8a4deb4fee9858b3143571b477859b371728a1d72bfca9b2c6b62b3ad
|
3 |
+
size 9572
|
runs/Jan20_10-32-26_jupyter-admin01/events.out.tfevents.1737369158.jupyter-admin01.120.10
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11bfe69829e5c06abaaa8eb908bc0dbc3ce910227dcba6f17c8628b18f1831dd
|
3 |
+
size 99070
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5432
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd7566b2ca0606ed2d567bee7a138343b121cf9876def0a42d795be7b6b83d99
|
3 |
size 5432
|