File size: 2,128 Bytes
01a3582
 
 
 
 
 
 
 
 
 
02c4bf4
 
b2abb0e
02c4bf4
 
 
01a3582
 
 
 
 
 
 
d0bbd86
01a3582
8c5a465
 
01a3582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c5a465
 
 
 
 
 
 
 
 
 
01a3582
 
 
 
 
 
 
02c4bf4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
base_model: indobenchmark/indobert-base-p1
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: indobert-finetuned-sentiment-happiness-index
  results: []
widget:
- text: Aku suka makan bakso
  example_title: Sentiment Analysis
language:
- id
pipeline_tag: text-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# indobert-finetuned-sentiment-happiness-index

This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an own private dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4094
- Accuracy: 0.8048

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 270  | 0.5214          | 0.7900   |
| 0.5321        | 2.0   | 540  | 0.6425          | 0.7475   |
| 0.5321        | 3.0   | 810  | 0.7702          | 0.7835   |
| 0.1711        | 4.0   | 1080 | 1.0106          | 0.7937   |
| 0.1711        | 5.0   | 1350 | 1.2141          | 0.7891   |
| 0.0508        | 6.0   | 1620 | 1.3340          | 0.7965   |
| 0.0508        | 7.0   | 1890 | 1.3483          | 0.8030   |
| 0.0133        | 8.0   | 2160 | 1.3591          | 0.8085   |
| 0.0133        | 9.0   | 2430 | 1.4149          | 0.8057   |
| 0.0055        | 10.0  | 2700 | 1.4094          | 0.8048   |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3