|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" DINOv2 model configuration""" |
|
|
|
from collections import OrderedDict |
|
from typing import Mapping |
|
|
|
from packaging import version |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.onnx import OnnxConfig |
|
from transformers.utils import logging |
|
from transformers.utils.backbone_utils import ( |
|
BackboneConfigMixin, |
|
get_aligned_output_features_output_indices, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class Dinov2Config(BackboneConfigMixin, PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Dinov2Model`]. It is used to instantiate an |
|
Dinov2 model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the Dinov2 |
|
[google/dinov2-base-patch16-224](https://huggingface.co/google/dinov2-base-patch16-224) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
mlp_ratio (`int`, *optional*, defaults to 4): |
|
Ratio of the hidden size of the MLPs relative to the `hidden_size`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.0): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the layer normalization layers. |
|
image_size (`int`, *optional*, defaults to 224): |
|
The size (resolution) of each image. |
|
patch_size (`int`, *optional*, defaults to 16): |
|
The size (resolution) of each patch. |
|
num_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
qkv_bias (`bool`, *optional*, defaults to `True`): |
|
Whether to add a bias to the queries, keys and values. |
|
layerscale_value (`float`, *optional*, defaults to 1.0): |
|
Initial value to use for layer scale. |
|
drop_path_rate (`float`, *optional*, defaults to 0.0): |
|
Stochastic depth rate per sample (when applied in the main path of residual layers). |
|
use_swiglu_ffn (`bool`, *optional*, defaults to `False`): |
|
Whether to use the SwiGLU feedforward neural network. |
|
out_features (`List[str]`, *optional*): |
|
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. |
|
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the |
|
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the |
|
same order as defined in the `stage_names` attribute. |
|
out_indices (`List[int]`, *optional*): |
|
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how |
|
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. |
|
If unset and `out_features` is unset, will default to the last stage. Must be in the |
|
same order as defined in the `stage_names` attribute. |
|
apply_layernorm (`bool`, *optional*, defaults to `True`): |
|
Whether to apply layer normalization to the feature maps in case the model is used as backbone. |
|
reshape_hidden_states (`bool`, *optional*, defaults to `True`): |
|
Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in |
|
case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size, |
|
seq_len, hidden_size)`. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Dinov2Config, Dinov2Model |
|
|
|
>>> # Initializing a Dinov2 dinov2-base-patch16-224 style configuration |
|
>>> configuration = Dinov2Config() |
|
|
|
>>> # Initializing a model (with random weights) from the dinov2-base-patch16-224 style configuration |
|
>>> model = Dinov2Model(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "dinov2" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
mlp_ratio=4, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.0, |
|
attention_probs_dropout_prob=0.0, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-6, |
|
image_size=224, |
|
patch_size=16, |
|
num_channels=3, |
|
qkv_bias=True, |
|
layerscale_value=1.0, |
|
drop_path_rate=0.0, |
|
use_swiglu_ffn=False, |
|
out_features=None, |
|
out_indices=None, |
|
apply_layernorm=True, |
|
reshape_hidden_states=True, |
|
num_register_tokens=0, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.mlp_ratio = mlp_ratio |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.num_channels = num_channels |
|
self.qkv_bias = qkv_bias |
|
self.layerscale_value = layerscale_value |
|
self.drop_path_rate = drop_path_rate |
|
self.use_swiglu_ffn = use_swiglu_ffn |
|
self.stage_names = ["stem"] + [ |
|
f"stage{idx}" for idx in range(1, num_hidden_layers + 1) |
|
] |
|
( |
|
self._out_features, |
|
self._out_indices, |
|
) = get_aligned_output_features_output_indices( |
|
out_features=out_features, |
|
out_indices=out_indices, |
|
stage_names=self.stage_names, |
|
) |
|
self.apply_layernorm = apply_layernorm |
|
self.reshape_hidden_states = reshape_hidden_states |
|
|
|
self.num_register_tokens = num_register_tokens |
|
|
|
|
|
class Dinov2OnnxConfig(OnnxConfig): |
|
torch_onnx_minimum_version = version.parse("1.11") |
|
|
|
@property |
|
def inputs(self) -> Mapping[str, Mapping[int, str]]: |
|
return OrderedDict( |
|
[ |
|
( |
|
"pixel_values", |
|
{0: "batch", 1: "num_channels", 2: "height", 3: "width"}, |
|
), |
|
] |
|
) |
|
|
|
@property |
|
def atol_for_validation(self) -> float: |
|
return 1e-4 |
|
|