hiyouga commited on
Commit
035f05b
·
verified ·
1 Parent(s): f883033

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -2
README.md CHANGED
@@ -32,7 +32,6 @@ import torch
32
  from PIL import Image
33
  from transformers import AutoModelForVision2Seq, AutoProcessor, AutoTokenizer, TextStreamer
34
 
35
-
36
  model_id = "hiyouga/PaliGemma-3B-Chat-v0.1"
37
  tokenizer = AutoTokenizer.from_pretrained(model_id)
38
  processor = AutoProcessor.from_pretrained(model_id)
@@ -46,7 +45,7 @@ pixel_values = processor(images=[image], return_tensors="pt").to(model.device)["
46
  messages = [
47
  {"role": "user", "content": "What is in this image?"}
48
  ]
49
- input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
50
  image_token_id = tokenizer.convert_tokens_to_ids("<image>")
51
  image_prefix = torch.empty((1, getattr(processor, "image_seq_length")), dtype=input_ids.dtype).fill_(image_token_id)
52
  input_ids = torch.cat((image_prefix, input_ids), dim=-1).to(model.device)
@@ -70,6 +69,48 @@ The following hyperparameters were used during training:
70
  - lr_scheduler_type: cosine
71
  - mixed_precision_training: bf16
72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  ### Framework versions
74
 
75
  - Pytorch 2.3.0
 
32
  from PIL import Image
33
  from transformers import AutoModelForVision2Seq, AutoProcessor, AutoTokenizer, TextStreamer
34
 
 
35
  model_id = "hiyouga/PaliGemma-3B-Chat-v0.1"
36
  tokenizer = AutoTokenizer.from_pretrained(model_id)
37
  processor = AutoProcessor.from_pretrained(model_id)
 
45
  messages = [
46
  {"role": "user", "content": "What is in this image?"}
47
  ]
48
+ input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
49
  image_token_id = tokenizer.convert_tokens_to_ids("<image>")
50
  image_prefix = torch.empty((1, getattr(processor, "image_seq_length")), dtype=input_ids.dtype).fill_(image_token_id)
51
  input_ids = torch.cat((image_prefix, input_ids), dim=-1).to(model.device)
 
69
  - lr_scheduler_type: cosine
70
  - mixed_precision_training: bf16
71
 
72
+ <details>
73
+ <summary><b>Show Llama Factory Config [CLICK TO EXPAND]</b></summary>
74
+
75
+ ```yaml
76
+ ### model
77
+ model_name_or_path: google/paligemma-3b-mix-448
78
+ visual_inputs: true
79
+
80
+ ### method
81
+ stage: sft
82
+ do_train: true
83
+ finetuning_type: full
84
+
85
+ ### ddp
86
+ ddp_timeout: 180000000
87
+ deepspeed: examples/deepspeed/ds_z3_config.json
88
+
89
+ ### dataset
90
+ dataset: identity,llava_1k_en,llava_1k_zh
91
+ template: gemma
92
+ cutoff_len: 1536
93
+ overwrite_cache: true
94
+ preprocessing_num_workers: 16
95
+
96
+ ### output
97
+ output_dir: saves/paligemma-chat
98
+ logging_steps: 10
99
+ save_steps: 100
100
+ plot_loss: true
101
+
102
+ ### train
103
+ per_device_train_batch_size: 1
104
+ gradient_accumulation_steps: 8
105
+ learning_rate: 0.00001
106
+ num_train_epochs: 3.0
107
+ lr_scheduler_type: cosine
108
+ warmup_steps: 50
109
+ bf16: true
110
+ ```
111
+
112
+ </details>
113
+
114
  ### Framework versions
115
 
116
  - Pytorch 2.3.0